Skip to main content
Log in

Intense Internal Waves and Their Manifestation in Interference Patterns of Received Signals on Oceanic Shelf

  • Underwater Acoustics
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Processed data of SWARM-95 natural experiment on the New Jersey coast are reported. The experiment has been performed under conditions of perturbation of stationary path by intense internal waves, which led to horizontal refraction of acoustic waves. Separate source images, produced by direct and refracted acoustic fields, are obtained based on double Fourier transform of interference patterns. The interference patterns of the transfer functions of unperturbed waveguide and perturbation of the medium are recovered by filtering off the regions of source images in the spectrogram and applying double inverse Fourier transform to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Chuprov, “Interference Structure of Sound in a Layered Ocean,” in Ocean Acoustics. Current State (Nauka, Moscow, 1982), pp. 71–91 [in Russian].

    Google Scholar 

  2. E. F. Orlov, “Interference Structure of Broadband Sound in Ocean,” in Problems in Ocean Acoustics (Nauka, Moscow, 1984), pp. 85–92 [in Russian].

    Google Scholar 

  3. V. M. Kuz’kin, G. A. Lyakhov, and S. A. Pereselkov, “Method for Measuring the Frequency Shifts of Interference Maxima in Monitoring of Dispersion Media: Theory, Implementation, and Prospects,” Phys. Wave Phenom. 18(3), 196 (2010) [DOI: 10. 3103/S1541308X10030076].

    Article  ADS  Google Scholar 

  4. V. M. Kuz’kin, M. V. Kutsov, and S. A. Pereselkov, “Frequency Shifts of Sound Field Maxima in Few-Mode Propagation, Which Are Initiated by Internal Wave Solitons,” Phys. Wave Phenom. 21(2), 139 (2013) [DOI: 10. 3103/S1541308X13020064].

    Article  ADS  Google Scholar 

  5. A. M. Thode, “Source Ranging with Minimal Environmental Information Using Virtual Receiver and Waveguide Invariant Theory,” J. Acoust. Soc. Am. 108(5), 1582 (2000).

    Article  ADS  Google Scholar 

  6. K. L. Cocrell and H. Smidt, “Robust Passive Range Estimation Using the Waveguide Invariant,” J. Acoust. Soc. Am. 127(5), 3780 (2010).

    Google Scholar 

  7. D. Rouseff and L. M. Zurk, “Striation-Based Beam Forming for Estimating theWaveguide Invariant with Passive Sonar,” J. Acoust. Soc. Am. Exp. Lett. 130(2), 76 (2011).

    Article  ADS  Google Scholar 

  8. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, “Noise Source Localization in Shallow Water,” Phys. Wave Phenom. 25(2), 156 (2017) [DOI: 10. 3103/S1541308X17020145].

    Article  ADS  Google Scholar 

  9. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, I. V. Kaznacheev, and V. A. Grigor’ev, “Interferometric Method for Estimating the Velocity of a Noise Sound Source and the Distance to It in Shallow Water Using a Vector-Scalar Receiver,” Phys. Wave Phenom. 25(4), 299 (2017) [DOI: 10. 3103/S1541308X17040100].

    Article  ADS  Google Scholar 

  10. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and Localization of a Sound Source in ShallowWater,” Acoust. Phys. 63(4), 449 (2017).

    Article  ADS  Google Scholar 

  11. I. V. Kaznacheev, G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “An Interferometric Method for Detecting aMoving Sound Source with a Vector-Scalar Receiver,” Acoust. Phys. 64(1), 37 (2018).

    Article  ADS  Google Scholar 

  12. V. M. Kuz’kin, S. A. Pereselkov, G. N. Kuznetsov, and I. V. Kaznacheev, “Interferometric Direction Finding by a Vector-Scalar Receiver,” Phys. Wave Phenom. 26(1), 63 (2018) [DOI: 10. 3103/S1541308X18010090].

    Article  ADS  Google Scholar 

  13. T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and L. Yu. Prosovetskiy, “Estimation of the Depth of a Stationary Sound Source in Shallow Water,” Phys. Wave Phenom. 23(4), 292 (2015) [DOI: 10. 3103/S1541308X1504007X].

    Article  ADS  Google Scholar 

  14. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and L. Yu. Prosovetskiy, “Wave Method for Estimating the Sound Source Depth in an Oceanic Waveguide,” Phys. Wave Phenom. 24(4), 310 (2016) [DOI: 10. 3103/S1541308X16040129].

    Article  ADS  Google Scholar 

  15. Ocean Acoustic Interference Phenomena and Signal Processing (AIP Conference Proceedings), Ed. by W. A. Kuperman and G. L. D’Spain. May 1−3, 2001, San Francisco, CA (Melville, N. Y., 2002).

    Google Scholar 

  16. B. G. Katsnel’son and S. A. Pereselkov, “Low-Frequency Acoustic Refraction Caused by InternalWave Solitons in a Shallow Sea,” Acoust. Phys. 46(6), 684 (2000).

    Article  ADS  Google Scholar 

  17. M. Badiey, B. G. Katsnelson, J. F. Lynch, and S. A. Pereselkov, “FrequencyDependence and Intensity Fluctuations Due to Shallow Water Internal Waves,” J. Acoust. Soc. Amer. 122(2), 747 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’kin, V.M., Pereselkov, S.A., Zvyagin, V.G. et al. Intense Internal Waves and Their Manifestation in Interference Patterns of Received Signals on Oceanic Shelf. Phys. Wave Phen. 26, 160–167 (2018). https://doi.org/10.3103/S1541308X18020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18020103

Navigation