Skip to main content
Log in

Study of the Surge Signals in a Plasma-Filled Rectangular Cavity

  • Waves in Plasma
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The aim of this analytical study of a plasma-filled rectangular cavity in time domain is to exhibit the ability of the evolutionary approach to study the electromagnetic fields forced by surge signals in a dynamical system. Maxwell’s equations for the fields and the boundary conditions for the perfect electric conductor rectangular cavity are supplemented with the constitutive relation for the plasma. Two different pulse waveforms were used for modeling of the surge signals exciting the fields. The solution is obtained for the dynamical system in the form of product of two elements. First element that depends on coordinates is a modal basis. The other element depending on time is a modal amplitude. The modal basis is specified as a summation of four subspaces. Two of these subspaces resemble the solenoidal modes, and the other two resemble the irrotational modes. Evolutionary differential equations with initial conditions are obtained and solved analytically for the amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hillion, “Some Comments on Electromagnetic Signals,” in Essays on the Formal Aspects of Electromagnetic Theory. Ed. by A. Lakhtakia (World Scientific, Singapore, 1993), pp. 127–137.

    Chapter  Google Scholar 

  2. H. F. Harmuth, “Electromagnetic Transients Not Explained by Maxwell’s Equations,” in Essays on the Formal Aspects of Electromagnetic Theory. Ed. by A. Lakhtakia (World Scientific, Singapore, 1993), pp. 87–126.

    Chapter  Google Scholar 

  3. P. Bernekorn, A. Karlsson, and G. Kristensson, “Propagation of Transient Electromagnetic Waves in Inhomogeneous and Dispersive Waveguides,” J. Electr. Waves Appl. 10, 1263 (1996).

    Article  Google Scholar 

  4. S. L. Dvorak and D. G. Duldy, “Propagation of Ultra-Wide-Band Electromagnetic Pulses through Dispersive Media,” IEEE Trans. Electromagn. Comp. 37(2), 192 (1995).

    Article  Google Scholar 

  5. G. Kristensson, “Transient Electromagnetic Wave Propagation in Waveguides,” J. Electr. Waves Appl. 9, 645 (1995).

    Article  Google Scholar 

  6. O. A. Tretyakov and F. Erden, “Evolutionary Approach to Electromagnetics As an Alternative to the Time-Harmonic Field Method,” IEEE APS/URSI Meeting (2012) [doi. org/10. 13140/2. 1. 2283. 4242].

    Google Scholar 

  7. M. Camp and H. Garbe, “Susceptibility of Personal Computer Systems to Electromagnetic Pulses with Double Exponential Character,” Adv. Radio Sci. 2, 63 (2004).

    Article  ADS  Google Scholar 

  8. J. M. Cramer, R. A. Scholtz, and M. Z. Win, “On the Analysis ofUWBCommunication Channels,” in Proceedings of the IEEE Military Communications Conference. Vol. 2, pp. 1191–1195 (1999) [DOI: 10. 1109/MILCOM. 1999. 821392].

    Google Scholar 

  9. F. Erden and O. A. Tretyakov, “Excitation by a Transient Signal of the Real-Valued Electromagnetic Fields in a Cavity,” Phys. Rev. E. 77, 056605 (2008).

    Article  ADS  Google Scholar 

  10. O. A. Tretyakov and F. Erden, “Temporal Cavity Oscillations Caused by a Wide-Band Double-Exponential Waveform,” in Proceedings of the 4th International Workshop on Electromagnetic Wave Scattering (September 18–22, 2006, Gebze, Kocaeli, Turkey) [DOI: 10. 13140/2. 1. 4591. 6165].

    Google Scholar 

  11. O. A. Tretyakov and F. Erden, “Temporal Cavity Oscillations Caused by a Wide-Band Waveform,” Prog. Electromagn. Res. B. 6, 183 (2008).

    Article  Google Scholar 

  12. R. N. El-Sharif and Kh. H. El-Shorbagy, “Inhomogeneous Relativistic Electron Beam Interaction with Inhomogeneous Warm Plasma,” Phys. Wave Phenom. 21(3), 222 (2013) [DOI: 10. 3103/S1541308X13030084].

    Article  ADS  Google Scholar 

  13. M. Camp and H. Garbe, “Parameter Estimation of Double Exponential Pulses (EMP, UWB) with Least Squares and Nelder–Mead Algorithm,” IEEE Trans. Electromagn. Comp. 46, 675 (2004).

    Article  Google Scholar 

  14. G. Wu, “Shape Properties of Pulses Described by Double Exponential Function and Its Modified Forms,” IEEE Trans. Electromagn. Comp. 56, 923 (2014).

    Article  Google Scholar 

  15. M. S. Antyufeyeva and O. A. Tretyakov, “Pulse Excitation of a Cavity with Dispersive Medium That Refractive Index is Positive and Negative,” in Proceedings of the 5th International Conference on Ultrawideband and Ultrashort Impulse Signals (September 6–10, 2010, Sevastopol), pp. 134–135 [DOI: 10. 1109/UWBUSIS. 2010. 5609163].

    Chapter  Google Scholar 

  16. A. Torre, “Relativistic Laguerre Polynomials and Splash Pulses,” Prog. Electromagn. Res. B. 13, 329 (2009).

    Article  Google Scholar 

  17. O. A. Tretyakov, “Essentials of Nonstationary and Nonlinear Electromagnetic Field Theory,” in Analytical and Numerical Methods in Electromagnetic Wave Theory. Ed. by M. Hashimoto, M. Idemen, and O. A. Tretyakov (Science House Co. Ltd., Japan, 1993), pp. 123–146.

    Google Scholar 

  18. S. Aksoy and O. A. Tretyakov, “Study of a Time Variant Cavity System,” J. Electromagn. Waves Appl. 16, 1535 (2002).

    Article  Google Scholar 

  19. S. Aksoy and O. A. Tretyakov, “The Evolution Equations in Study of the Cavity Oscillations Excited by a Digital Signal,” IEEE Trans. Antennas Propagat. 52(1), 263 (2004) [DOI: 10. 1109/TAP. 2003. 822399].

    Article  ADS  Google Scholar 

  20. F. Erden and O. A. Tretyakov, “Temporal Evolution of the Irrotational and Solenoidal Cavity Modes,” in Proceedings of the 30th URSI General Assembly and Scientific Symposium (August 13–20, 2011, Istanbul, Turkey), pp. 1–4 [DOI: 10. 1109/URSIGASS. 2011. 6050488].

    Google Scholar 

  21. F. Erden and O. A. Tretyakov, “Analytical Approach for Studying a Time-Domain Cavity Problem,” in IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (July 6–11, 2014, Memphis, TN, USA), pp. 131–132 [DOI: 10. 1109/APS. 2014. 6904397].

    Google Scholar 

  22. F. Erden, “Evolutionary Approach to Solve an Novel Time-Domain Cavity Problem,” IEEE Trans. Antennas Propag. 65(11), 5918 (2017) [DOI: 10. 1109/TAP. 2017. 2752240].

    Article  ADS  Google Scholar 

  23. S. Aksoy, M. Antyufeyeva, E. Basaran, A. A. Ergin, and O. A. Tretyakov, “Time-Domain Cavity Oscillations Supported by a Temporally Dispersive Dielectric,” IEEE Trans. Microwave Theory Techn. 53, 2465 (2005).

    Article  ADS  Google Scholar 

  24. G. Gradoni and L. R. Arnaut, “Transient Evolution of Eigenmodes in Dynamic Cavities and Time-Varying Media,” Radio Sci. 50, 1256 (2015).

    Article  ADS  Google Scholar 

  25. A. E. Dubinov and M. A. Sazonkin, “Supernonlinear Ion-Acoustic Waves in a Dusty Plasma,” Phys. Wave Phenom. 21(2), 118 (2013) [DOI: 10. 3103/S1541308X13020039].

    Article  ADS  Google Scholar 

  26. E. J. Rothwell and M. J. Cloud, Electromagnetics (CRC Press, Boca Raton Florida, 2001).

    Book  Google Scholar 

  27. J. VanBladel, Electromagnetic Fields (Hemisphere Publ., N. Y., 1985).

    Google Scholar 

  28. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (Wiley–IEEE Press, N. Y., 1990).

    Book  MATH  Google Scholar 

  29. J. A. Lappo-Danilevsky, Theory of Functions onMatrices and Systems of Linear Differential Equations (ONTI State Tech.-Theor. Press, Leningrad, 1934) [in Russian].

    Google Scholar 

  30. S. Hayashi, Surges on Transmission Systems (Denki-Shoin Inc., Kyoto, Japan, 1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Erden.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erden, F. Study of the Surge Signals in a Plasma-Filled Rectangular Cavity. Phys. Wave Phen. 26, 139–149 (2018). https://doi.org/10.3103/S1541308X18020085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18020085

Navigation