Skip to main content
Log in

Quasi-Resonant Enhancement of the Extinction Ratio in the Amorphous Silicon Nanowire Grid Polarizer

  • Nanomaterial Optical Elements
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Spectral characteristics of thin-film nanowire grid polarizers based on amorphous silicon are numerically investigated. The extinction ratio, transmission coefficients, and reflection coefficients are calculated using the MC Grating code based on the rigorous coupled-wave analysis. It is found out that at particular structure parameters of the nanowire grid polarizer the extinction ratio increases to 106 at the optical radiation wavelength of about 380 nm, which is characterized as a quasi-resonance effect. A dissipative-interference qualitative interpretation of this effect within the waveguide model is proposed. This interpretation is confirmed by the calculated field distribution patterns in the vicinity of the quasiresonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-Throughput Fabrication of Compact and Flexible BilayerNanowire Grid Polarizers for Deep-Ultraviolet to Infrared Range,” J. Vacuum Sci. Technol. B. 32(3), 031206 (2014).

    Article  Google Scholar 

  2. V. Pelletier, K. Asakawa, M. Wu, D. H. Adamson, R. A. Register, and P. M. Chaikin, “Aluminum Nanowire Polarizing Grids: Fabrication and Analysis,” Appl. Phys. Lett. 88, 211114 (2006).

    Article  ADS  Google Scholar 

  3. T. Weber, T. Käsebier, S. Krokera, and A. Tünnermann, “High-Frequency Binary Amorphous Silicon Grating Working As Wire Grid Polarizer for UV Applications,” Proc. SPIE. 8270, 82700F-1 (2012).

  4. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband Iridium Wire Grid Polarizer for UV Applications,” Opt. Lett. 36(4), 445 (2011) [DOI: 10. 1364/OL. 36. 000445].

    Article  ADS  Google Scholar 

  5. G. R. Bird and M. Parrish, Jr. “The Wire Grid As Near-Infrared Polarizer,” J. Opt. Soc. Am. 50, 886 (1960).

    Article  ADS  Google Scholar 

  6. Ming Ma, D. S. Meyaard, Qifeng Shan, Jaehee Cho, E. F. Schubert, GiBumKim, Min-Ho Kim, and Cheolsoo Sone, “Polarized Light Emission from GaInN Light-Emitting Diodes Embedded with Subwavelength Wire-Grid Polarizers,” Appl. Phys. Lett. 101(6), 061103 (2012).

    Article  ADS  Google Scholar 

  7. T. Weber, S. Kroker, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Silicon Wire Grid Polarizer for Ultraviolet Applications,” Appl. Opt. 53(34), 8140 (2014).

    Article  ADS  Google Scholar 

  8. Y.-R. Hong, K. Asakawa, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon Nanowire Grid Polarizer for Very Deep Ultraviolet Fabricated from a Shear-Aligned Diblock Copolymer Template,” Opt. Lett. 32(21), 3125 (2007) [DOI: 10. 1364/OL. 32. 003125].

    Article  ADS  Google Scholar 

  9. J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon Nanowire Polarizers for Far Ultraviolet (Sub-200 nm) Applications: Modeling and Fabrication,” J. Appl. Phys. 107(8), 084305 (2010).

    Article  ADS  Google Scholar 

  10. D. V. Sivukhin, General Course of Physics. Vol. 3: Electricity (Fizmatlit, Moscow Physicotechn. Inst., Moscow, 2002) [in Russian].

    Google Scholar 

  11. https://mcgrating. com/

  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Grating,” J. Opt. Soc. Am. A. 12(5), 1068 (1995).

    Article  ADS  Google Scholar 

  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach,” J. Opt. Soc. Am. A. 12(5), 1077 (1995).

    Article  ADS  Google Scholar 

  14. I. M. Akhmedzhanov, D. S. Kibalov, and V. K. Smirnov, “Comparative Analysis of Two Methods for Calculating Reflectance of Black Silicon,” Quantum Electron. 45(4), 385 (2015).

    Article  ADS  Google Scholar 

  15. I. M. Akhmedzhanov, D. V. Baranov, and E. M. Zolotov, “Characterization of V-Shaped Plasmon Polariton Waveguides Using a Differential Heterodyne Microscope at Single Polarization,” Laser Phys. 24, 085901 (2014).

    Article  ADS  Google Scholar 

  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

    Google Scholar 

  17. Physical Values [Handbook], Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  18. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction,” Phys. Rev. Lett. 94, 197401 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Akhmedzhanov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmedzhanov, I.M., Nurligareev, D.K. & Usievich, B.A. Quasi-Resonant Enhancement of the Extinction Ratio in the Amorphous Silicon Nanowire Grid Polarizer. Phys. Wave Phen. 26, 109–115 (2018). https://doi.org/10.3103/S1541308X1802005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X1802005X

Navigation