Physics of Wave Phenomena

, Volume 26, Issue 1, pp 63–73 | Cite as

Interferometric Direction Finding by a Vector-Scalar Receiver

  • V. M. Kuz’kin
  • S. A. Pereselkov
  • G. N. Kuznetsov
  • I. V. Kaznacheev
Underwater Acoustics


A method for interferometric direction finding of a broadband sound source in an oceanic waveguide by a single vector-scalar receiver is presented. The method is based on the double Fourier transform of the interference pattern formed during motion. The efficiencies of the proposed direction finding method and the method based on measuring the delay times of signals arriving at spaced scalar receivers are compared based on the natural experiment results. The noise immunity of the interferometric direction finding method is considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Gordienko, Vector-Phase Methods in Acoustics (Fizmatlit,Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    G. L. D’Spain, J. C. Luby, G. R. Wilson, and R. A. Gramann, “Vector Sensors and Vector Sensor Line Arrays: Comments on Optimal Array Gain and Detection,” J. Acoust. Soc. Am. 120(1), 171 (2006).CrossRefGoogle Scholar
  3. 3.
    V. A. Gordienko, E. L. Gordienko, N. V. Krasnopistsev, and V. N. Nekrasov, “Interference Immunity of Hydroacoustic Power Flux Receive Systems,” Acoust. Phys. 54(5), 670 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    V. A. Shchurov, V. P. Kuleshov, and A. V. Cherkasov, “Vortex Properties of the Acoustic Intensity Vector in a Shallow Sea,” Acoust. Phys. 57(6), 851 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A. I. Belov and G. N. Kuznetsov, “Estimating the Acoustic Characteristics of Surface Layers of the Sea Bottom Using Four-Component Vector-Scalar Receivers,” Acoust. Phys. 62(2), 194 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    N. I. Belova, G. N. Kuznetsov, and A. N. Stepanov, “Experimental Research of the Interference and Phase Structure of the Power Flux from a Local Source in ShallowWater,” Acoust. Phys. 62(3), 328 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Belov and G. N. Kuznetsov, “Direction Finding and Suppression of Vector-Scalar Sound Signals in Shallow Water Taking into Account their Correlation and Mode Structure,” Acoust. Phys. 62(3), 319 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    J. P. Ianniello, “Recent Developments is Sonar Signal Processing,” IEEE Signal Proc. Mag. 15(4), 27 (1998).Google Scholar
  9. 9.
    G. S. Malyshkin and G. B. Sidel’nikov, “Optimal and Adaptive Methods of Processing Hydroacoustic Signals (Review),” Acoust. Phys. 60(5), 570 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. G. Sazontov and A. I. Malekhanov, “Matched Field Signal Processing in Underwater Sound Channels (Review),” Acoust. Phys. 61(2), 213 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and Localization of a Sound in Shallow Water,” Acoust. Phys. 63(4), 449 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Estimation of the Depth of a Stationary Sound Source in Shallow Water,” Phys. Wave Phenom. 23(4), 292 (2015) [DOI: 10. 3103/S1541308X1504007X].ADSCrossRefGoogle Scholar
  13. 13.
    G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Wave Method for Estimating the Sound Source Depth in a OceanicWaveguide,” Phys. Wave Phenom. 24(4), 310 (2016) [DOI: 10. 3103/S1541308X16040129].ADSCrossRefGoogle Scholar
  14. 14.
    G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, “Noise Source Localization in Shallow Water,” Phys. Wave Phenom. 25(2), 156 (2017) [DOI: 10. 3103/S1541308X17020145].ADSCrossRefGoogle Scholar
  15. 15.
    G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, I. V. Kaznacheev, and V. A. Grigor’ev, “Interferometric Method for Estimating the Velocity of a Noise Sound Source and the Distance to It in Shallow Water Using a Vector-Scalar Receiver,” Phys. Wave Phenom. 25(4), 299 (2017) [DOI: 10. 3103/S1541308X17040100].ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. M. Kuz’kin
    • 1
  • S. A. Pereselkov
    • 1
    • 2
  • G. N. Kuznetsov
    • 1
  • I. V. Kaznacheev
    • 2
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Voronezh State UniversityVoronezhRussia

Personalised recommendations