Skip to main content
Log in

Influence of Quantum Effects on the Magnetic Field Behavior in Overdense Plasma

  • Electromagnetic Waves in Quantum Overdense Plasma
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

We study the conditions for the anomalous transmission of electromagnetic waves through quantum overdense plasma. We show that this anomalous transmission is triggered due to the excitation of surface waves, as was observed in the classical overdense plasma. The conditions for the excitation of surface waves are obtained by studying the dispersion relation within the framework of quantum hydrodynamics. The corresponding consequences at the classical limits are consistent with the previous studies. In comparison with the classical regimes, the quantum dispersion curve exhibits an asymptotic behavior which indicates significant effects, in particular, at large wavelengths. Herein, to create the required evanescent waves, we consider the quantum plasma to be placed between two ordinary prisms and dielectrics. The effects of the main parameters, such as the permittivity of the prisms and dielectrics and the Fermi velocity, on the rate of the transmission and the magnetic field propagation are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Manfredi, “How to Model Quantum Plasmas,” Fields Inst. Commun. 46, 263 (2005).

    MathSciNet  MATH  Google Scholar 

  2. P. K. Shukla and B. Eliasson, “Novel Attractive Force between Ions in Quantum Plasmas,” Phys. Rev. Lett. 108(16), (2012): 165007.

    Article  ADS  Google Scholar 

  3. A. Ghoshal and Y. K. Ho, “Ground States of Helium in Exponential-Cosine-Screened Coulomb Potentials,” J. Phys. B: Atom., Molec., Opt. Phys. 42(7), 075002 (2009).

    Article  ADS  Google Scholar 

  4. G. Chabrier, F. Douchin, and A. Y. Potekhin, “Dense Astrophysical Plasmas,” J. Phys.: Cond. Matter. 14(40), 9133 (2002).

    ADS  Google Scholar 

  5. M. Marklund and P. K. Shukla, “Nonlinear Collective Effects in Photon−Photon and Photon−Plasma Interactions,” Rev. Mod. Phys. 78(2), 591 (2006).

    Article  ADS  Google Scholar 

  6. Yu. L. Klimontovich and V. P. Silin, “To the Theory of Excitation Spectra of Macroscopic Systems,” Dokl. Akad. Nauk SSSR. 82(3), 361 (1952) [in Russian].

    Google Scholar 

  7. J. Lindhard, “On the Properties of a Gas of Charged Particles,” DanskeMat. -Fys. Medd. Det Kgl. Danske Vidensk. Selskab. 28(8), 1 (1954).

    MathSciNet  MATH  Google Scholar 

  8. N. D. Mermin, “Lindhard Dielectric Function in the Relaxation-Time Approximation,” Phys. Rev. B. 1(5), 2362 (1970).

    Article  ADS  Google Scholar 

  9. Jun Zhu, Hang Zhao, and Min Qiu, “Surface Waves on the Relativistic Quantum Plasma Half-Space,” Phys. Lett. A. 77(28), 1736 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Swarniv Chandra, Parthasona Maji, and Basudev Ghosh, “Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space,” Int. J. Math., Comp., Phys., Electr. Comput. Eng. 8(5),842 (2014).

    Google Scholar 

  11. M. Lazar, P. K. Shukla, and A. Smolyakov, “Surface Waves on a Quantum Plasma Half-Space,” Phys. Plasmas. 14(12), 124501 (2007).

    Article  ADS  Google Scholar 

  12. F. Haas, “A Magnetohydrodynamic Model for Quantum Plasmas,” Phys. Plasmas. 12(6), 062117 (2005).

    Article  ADS  Google Scholar 

  13. Yu. O. Tyshetskiy, S. V. Vladimirov, and R. Kompaneets, “Peculiarities of Surface Plasmons inQuantum Plasmas,” J. Plasma Phys. 79(4), 387 (2013).

    Article  ADS  Google Scholar 

  14. A. Bret, “Filamentation Instability in a Quantum Plasma,” Phys. Plasmas. 14(8), 084503 (2007).

    Article  ADS  Google Scholar 

  15. R. Dragila, B. Luther-Davies, and S. Vukovic, “High Transparency of Classically Opaque Metallic Films,” Phys. Rev. Lett. 55(10), 1117 (1985).

    Article  ADS  Google Scholar 

  16. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial,” Appl. Phys. Lett. 78(4), 489 (2001).

    Article  ADS  Google Scholar 

  17. Yu. P. Bliokh, J. Felsteiner, and Ya. Z. Slutsker, “Total Absorption of an Electromagnetic Wave by an Overdense Plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).

    Article  ADS  Google Scholar 

  18. Yu. P. Bliokh, “Plasmon Mechanism of Light Transmission through a Metal Film or a Plasma Layer,” Opt. Commun. 259(2), 436 (2006).

    Article  ADS  Google Scholar 

  19. L. Rajaei, S. Mirabotalebi, and B. Shokri, “Transmission of Electromagnetic Waves through a Warm Over-Dense Plasma Layer with a Dissipative Factor,” Phys Scripta. 84(1), 015506 (2011).

    Article  ADS  MATH  Google Scholar 

  20. S. Miraboutalebi, L. Rajaei, and M. K. Khadivi Borogeni, “Plasmon Resonance Coupling in Cold Overdense Dissipative Plasma,” J. Theor. Appl. Phys. 7(1), 24 (2013).

    Article  ADS  Google Scholar 

  21. L. Rajaei, “Interaction of Electromagnetic Wave with Quantum Over Dense Plasma Layer,” Eur. Phys. J. 70(11), 231 (2016).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Khadivi Borougeni.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadivi Borougeni, M.K., Rajaei, L., Gharaati, A. et al. Influence of Quantum Effects on the Magnetic Field Behavior in Overdense Plasma. Phys. Wave Phen. 26, 56–62 (2018). https://doi.org/10.3103/S1541308X18010089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18010089

Navigation