Physics of Wave Phenomena

, Volume 26, Issue 1, pp 47–55 | Cite as

Atom Localization Using a Rydberg State

Light-Induced Effects in Media With 2D and 3D Atom Localization
  • 14 Downloads

Abstract

A theoretical study is presented for two-dimensional (2D) and three-dimensional (3D) atom localization in a four-level atomic system involving a Rydberg state. The scheme is based on a mixture of two well-known V- and ladder-type systems illuminated by a weak probe field as well as control and switching laser beams of larger intensity, which could be standing waves. As a result of space-dependent atom− light interaction and due to the effect of Rydberg electromagnetically induced transparency or Rydberg electromagnetically induced absorption, various 2D and 3D localization structures appear. Specifically, the detecting probability and precision of 2D and 3D atom localization can be remarkably enhanced through suitable adjusting the controlling parameters of the system. The proposed scheme may provide a promising approach to achieve high precision and perfect resolution 2D and 3D atom localization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. O. Scully and K. Drühl, “Quantum Eraser: A Proposed Photon Correlation Experiment Concerning Observation and “Delayed Choice” in Quantum Mechanics,” Phys. Rev. A. 25, 2208 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    U. W. Rathe and M. O. Scully, “Theoretical Basis for a New Subnatural Spectroscopy via Correlation Interferometry,” Lett. Math. Phys. 34, 297 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit,” Phys. Rev. Lett. 85, 2733 (2000.ADSCrossRefGoogle Scholar
  4. 4.
    S. Chu and C. Wieman, “Laser Cooling and Trapping of Atoms: Introduction,” J. Opt. Soc. Am. B. 6, 2020 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    K. T. Kapale, S. Qamar, and M. S. Zubairy, “Spectroscopic Measurement of an Atomic Wave Function,” Phys. Rev. A. 67, 023805 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    P. Storey, M. Collett, and D. Walls, “Atomic-Position Resolution by Quadrature-Field Measurement,” Phys. Rev. A. 47, 405 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Atom Localization via Resonance Fluorescence,” Phys. Rev. A. 61, 063806 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    E. Paspalakis and P. L. Knight, “Localizing an Atom via Quantum Interference,” Phys. Rev. A. 63, 065802 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Subwavelength Atom Localization via Amplitude and Phase Control of the Absorption Spectrum,” Phys. Rev. A. 72, 013820 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    G. S. Agarwal and K. T. Kapale, “Subwavelength Atom Localization via Coherent Population Trapping,” J. Phys. B: At. Mol. Opt. Phys. 39, 3437 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    J. Xu, Q. Li, W. Chao Yan, X. DongChen, and X. Ming Hu, “Sub-Half-Wavelength Localization of a Two-Level Atom via Trichromatic Phase Manipulation,” Phys. Lett. A. 372, 6032 (2008).ADSCrossRefMATHGoogle Scholar
  12. 12.
    V. Ivanov and Y. Rozhdestvensky, “Two-Dimensional Atom Localization in a Four-Level Tripod System in Laser Fields,” Phys. Rev. A. 81, 033809 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    J. Li, R. Yu, M. Liu, C. Ding, and X. Yang, “Efficient Two-Dimensional Atom Localization via Phase-Sensitive Absorption Spectrum in a Radio-Frequency-Driven Four-Level Atomic System,” Phys. Lett. A. 375, 3978 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    C. Ding, J. Li, Z. Zhan, and X. Yang, “Two-Dimensional Atom Localization via Spontaneous Emission in a Coherently Driven Five-Level M-Type Atomic System,” Phys. Rev. A. 83, 063834 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Two-Dimensional Atom Localization via Interacting Double-Dark Resonances,” J. Opt. Soc. Am. B. 28, 622 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    C. Ding, J. Li, X. Yang, D. Zhang, and H. Xiong, “Proposal for Efficient Two-Dimensional Atom Localization Using Probe Absorption in a Microwave-Driven Four-Level Atomic System,” Phys. Rev. A. 84, 043840 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    Chunling Ding, Jiahua Li, Rong Yu, Xiangying Hao, and Ying Wu, “High-Precision Atom Localization via Controllable Spontaneous Emission in a Cycle-Configuration Atomic System,” Opt. Exp. 20(7), 7870 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    Z. Wang, B. Yu, J. Zhu, Z. Cao, S. Zhen, X. Wu, and F. Xu, “Atom Localization via Controlled Spontaneous Emission in a Five-Level Atomic System,” Ann. Phys. 327, 1132 (2012).ADSCrossRefMATHGoogle Scholar
  19. 19.
    R.-G. Wan, T.-Y. Zhang, and J. Kou, “Two-Dimensional Sub-Half-Wavelength Atom Localization via Phase Control of Absorption andGain,” Phys. Rev. A. 87, 043816 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    Rahmatullah and S. Qamar, “Two-Dimensional Atom Localization via Probe-Absorption Spectrum,” Phys. Rev. A. 88(1), 013846 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    J. C. Wu and B. Q. Ai, “Two-Dimensional Sub-Wavelength Atom Localization in an Electromagnetically Induced Transparency Atomic System,” Europhys. Lett. 107, 14002 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    D. Zhang, R. Yu, J. Li, X. Hao, and X. Yang, “Efficient Two-Dimensional Atom Localization via Phase-Sensitive Absorption and Gain Spectra in a Cycle-Configuration Four-Level Atomic System,” Opt. Commun. 321, 138 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    T. Shui, Z. Wang, and B. Yu, “Efficient Two-Dimensional Atom Localization via an External Coherent Magnetic Field,” Quantum. Inf. Proc. 14, 929 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Z. Wang and B. Yu, “High-Precision Two-Dimensional Atom Localization via Quantum Interference in a Tripod-Type System,” Laser Phys. Lett. 11, 035201 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today. 50, 36 (1997).CrossRefGoogle Scholar
  26. 26.
    M. D. Lukin, “Colloquium: Trapping and Manipulating Photon States in Atomic Ensembles,” Rev. Mod. Phys. 75, 457 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wu and X. Yang, “Electromagnetically Induced Transparency in V-, Λ-, and Cascade-Type Schemes Beyond Steady-State Analysis,” Phys. Rev. A. 71, 053806 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation,” Phys. Rev. Lett. 86(18), 3925 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical Bistability and Multistability via Atomic Coherence in anN-Type AtomicMedium,” Phys. Rev. A. 74, 035801 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, and R.-K. Lee, “Coherent Control of Optical Bistability in an Open Λ-Type Three-Level Atomic System,” J. Opt. Soc. Am. B. 29, 2891 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System,” Phys. Rev. Lett. 87, 073601 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    H. R. Hamedi and G. Juzeliuunas, “Phase-Sensitive Kerr Nonlinearity for Closed-Loop Quantum Systems,” Phys. Rev. A. 91, 053823 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    Y. Wu and X. Yang, “Highly Efficient Four-Wave Mixing in Double-Λ System in Ultraslow Propagation Regime,” Phys. Rev. A. 70, 053818 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Zhang, A. W. Brown, and M. Xiao, “Matched Ultraslow Propagation of Highly Efficient Four-Wave Mixing in a Closely Cycled Double-Ladder System,” Phys. Rev. A. 74, 053813 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    W.-X. Yang, A.-X. Chen, L.-G. Si, K. Jiang, X. Yang, and R.-K. Lee, “Three Coupled Ultraslow Temporal Solitons in a Five-Level Tripod Atomic System,” Phys. Rev. A. 81, 023814 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    P. Kumar and Sh. Dasgupta, “Optical Switching and Bistability in Four-Level Atomic Systems,” Phys. Rev. A. 94, 023851 (2016).ADSCrossRefGoogle Scholar
  37. 37.
    H. R. Hamedi and S. H. Asadpour, “Realization of Optical Bistability and Multistability in Landau-Quantized Graphene,” J. Appl. Phys. 117, 183101 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    F. Ghafoor and R. G. Nazmitdinov, “Triplet Absorption Spectroscopy and Electromagnetically Induced Transparency,” J. Phys. B: At. Mol. Opt. Phys. 49, 175502 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    Yihong Qi, Yueping Niu, Fengxue Zhou, Yandong Peng, and Shangqing Gong, “Phase Control of Coherent Pulse Propagation and Switching Based on Electromagnetically Induced Transparency in a Four-Level Atomic System,” J. Phys. B: At. Mol. Opt. Phys. 44, 085502 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    Shaopeng Liu, Wen-Xing Yang, Zhonghu Zhu, and Ray-Kuang Lee, “Effective Terahertz Signal Detection via Electromagnetically Induced Transparency in Graphene,” J. Opt. Soc. Am. B. 33(2), 279 (2016).ADSCrossRefGoogle Scholar
  41. 41.
    H. R. Hamedi and G. Juzeliūnas, “Phase-Sensitive Atom Localization for Closed-Loop Quantum Systems,” Phys. Rev. A. 94, 013842 (2016).ADSCrossRefGoogle Scholar
  42. 42.
    Luling Jin, Dongchao Cheng, and Hui Sun, Yueping Niu, Shiqi Jin, and Shangqing Gong, “Atom Localization in a Four-Level Alkaline Earth Atomic System,” J. Mod. Opt. 55, 155 (2008).ADSCrossRefMATHGoogle Scholar
  43. 43.
    V. S. Ivanov, Yu. V. Rozhdestvensky, and K.-A. Suominen, “Three-Dimensional Atom Localization by Laser Fields in a Four-Level Tripod System,” Phys. Rev. A. 90, 063802 (2014).ADSCrossRefGoogle Scholar
  44. 44.
    Lei Yang, Dewei Cao, Yu Wang, Zhiping Wang, and Benli Yu, “Three-Dimensional Sub-Half-Wavelength Atom Localization via Interacting Double-Dark Resonances,” Laser Phys. 26, 115501 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    Zhiping Wang and Benli Yu, “High-Precision Three-Dimensional Atom Localization via Spontaneous Emission in a Four-Level Atomic System,” Laser Phys. Lett. 13, 065203 (2016).ADSCrossRefGoogle Scholar
  46. 46.
    Zhonghu Zhu, Wen-Xing Yang, Ai-Xi Chen, Shaopeng Liu, and Ray-Kuang Lee, “Dressed-State Analysis of Efficient Three-Dimensional Atom Localization in a Ladder-Type Three-Level Atomic System,” Laser Phys. 26, 075203 (2016).ADSCrossRefGoogle Scholar
  47. 47.
    Zhiping Wang and Benli Yu, “Efficient Three-Dimensional Atom Localization via Probe Absorption,” J. Opt. Soc. Am. B. 32(7), 1281 (2015).ADSCrossRefGoogle Scholar
  48. 48.
    H. R. Hamedi and M. R. Mehmannavaz, “Phase Control of Three-Dimensional Atom Localization in a Four-Level Atomic System in Lambda Configuration,” J. Opt. Soc. Am. B. 33(1), 41 (2016).ADSCrossRefGoogle Scholar
  49. 49.
    J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, “Collective Many-Body Interaction in Rydberg Dressed Atoms,” Phys. Rev. Lett. 105, 160404 (2010).ADSCrossRefGoogle Scholar
  50. 50.
    M. Saffman, T. G. Walker, and K. Mølmer, “Quantum Information with Rydberg Atoms,” Rev. Mod. Phys. 82, 2313 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 98, 113003 (2007).ADSCrossRefGoogle Scholar
  52. 52.
    D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically Induced Transparency with Rydberg Atoms,” Phys. Rev. Lett. 107, 213601 (2011).ADSCrossRefGoogle Scholar
  53. 53.
    J. Ruseckas, I. A. Yu, and G. Juzeliūnas, “Creation of Two-Photon States via Interactions between Rydberg Atoms During Light Storage,” Phys. Rev. A. 95, 023807 (2017).ADSCrossRefGoogle Scholar
  54. 54.
    C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-Photon Electromagnetically Induced Transparency Using Rydberg States,” Opt. Lett. 37(18), 3858 (2012).ADSCrossRefGoogle Scholar
  55. 55.
    V. Bharti and V. Natarajan, “Sub-and Super-Luminal Light Propagation Using a Rydberg State,” Opt. Commun. 392, 180 (2017).ADSCrossRefGoogle Scholar
  56. 56.
    V. Bharti, A. Wasan, and V. Natarajan, “Wavelength Mismatch Effect in Electromagnetically Induced Absorption,” Phys. Lett. A. 380, 2390 (2016).ADSCrossRefGoogle Scholar
  57. 57.
    V. Bharti and V. Natarajan, “Study of a Four-Level System in Vee + Ladder Configuration,” Opt. Commun. 356, 510 (2015).ADSCrossRefGoogle Scholar
  58. 58.
    H. R. Hamedi, M. Sahrai, H. Khoshsima, and G. JuzeliŪnas, “Optical Bistability Forming Due to a Rydberg State,” J. Opt. Soc. Am. B. 34(9), 1923 (2017).ADSCrossRefGoogle Scholar
  59. 59.
    M. S. I. Pierre Meystre, Elements of Quantum Optics (Springer, Berlin, 1999).CrossRefMATHGoogle Scholar
  60. 60.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).CrossRefMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstronomyVilnius UniversityVilniusLithuania
  2. 2.Research Institute for Applied Physics and AstronomyUniversity of TabrizTabrizIran

Personalised recommendations