Atom Localization Using a Rydberg State
- 14 Downloads
Abstract
A theoretical study is presented for two-dimensional (2D) and three-dimensional (3D) atom localization in a four-level atomic system involving a Rydberg state. The scheme is based on a mixture of two well-known V- and ladder-type systems illuminated by a weak probe field as well as control and switching laser beams of larger intensity, which could be standing waves. As a result of space-dependent atom− light interaction and due to the effect of Rydberg electromagnetically induced transparency or Rydberg electromagnetically induced absorption, various 2D and 3D localization structures appear. Specifically, the detecting probability and precision of 2D and 3D atom localization can be remarkably enhanced through suitable adjusting the controlling parameters of the system. The proposed scheme may provide a promising approach to achieve high precision and perfect resolution 2D and 3D atom localization.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. O. Scully and K. Drühl, “Quantum Eraser: A Proposed Photon Correlation Experiment Concerning Observation and “Delayed Choice” in Quantum Mechanics,” Phys. Rev. A. 25, 2208 (1982).ADSCrossRefGoogle Scholar
- 2.U. W. Rathe and M. O. Scully, “Theoretical Basis for a New Subnatural Spectroscopy via Correlation Interferometry,” Lett. Math. Phys. 34, 297 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
- 3.A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit,” Phys. Rev. Lett. 85, 2733 (2000.ADSCrossRefGoogle Scholar
- 4.S. Chu and C. Wieman, “Laser Cooling and Trapping of Atoms: Introduction,” J. Opt. Soc. Am. B. 6, 2020 (1989).ADSCrossRefGoogle Scholar
- 5.K. T. Kapale, S. Qamar, and M. S. Zubairy, “Spectroscopic Measurement of an Atomic Wave Function,” Phys. Rev. A. 67, 023805 (2003).ADSCrossRefGoogle Scholar
- 6.P. Storey, M. Collett, and D. Walls, “Atomic-Position Resolution by Quadrature-Field Measurement,” Phys. Rev. A. 47, 405 (1993).ADSCrossRefGoogle Scholar
- 7.S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Atom Localization via Resonance Fluorescence,” Phys. Rev. A. 61, 063806 (2000).ADSCrossRefGoogle Scholar
- 8.E. Paspalakis and P. L. Knight, “Localizing an Atom via Quantum Interference,” Phys. Rev. A. 63, 065802 (2001).ADSCrossRefGoogle Scholar
- 9.M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Subwavelength Atom Localization via Amplitude and Phase Control of the Absorption Spectrum,” Phys. Rev. A. 72, 013820 (2005).ADSCrossRefGoogle Scholar
- 10.G. S. Agarwal and K. T. Kapale, “Subwavelength Atom Localization via Coherent Population Trapping,” J. Phys. B: At. Mol. Opt. Phys. 39, 3437 (2006).ADSCrossRefGoogle Scholar
- 11.J. Xu, Q. Li, W. Chao Yan, X. DongChen, and X. Ming Hu, “Sub-Half-Wavelength Localization of a Two-Level Atom via Trichromatic Phase Manipulation,” Phys. Lett. A. 372, 6032 (2008).ADSCrossRefMATHGoogle Scholar
- 12.V. Ivanov and Y. Rozhdestvensky, “Two-Dimensional Atom Localization in a Four-Level Tripod System in Laser Fields,” Phys. Rev. A. 81, 033809 (2010).ADSCrossRefGoogle Scholar
- 13.J. Li, R. Yu, M. Liu, C. Ding, and X. Yang, “Efficient Two-Dimensional Atom Localization via Phase-Sensitive Absorption Spectrum in a Radio-Frequency-Driven Four-Level Atomic System,” Phys. Lett. A. 375, 3978 (2011).ADSCrossRefGoogle Scholar
- 14.C. Ding, J. Li, Z. Zhan, and X. Yang, “Two-Dimensional Atom Localization via Spontaneous Emission in a Coherently Driven Five-Level M-Type Atomic System,” Phys. Rev. A. 83, 063834 (2011).ADSCrossRefGoogle Scholar
- 15.R.-G. Wan, J. Kou, L. Jiang, Y. Jiang, and J.-Y. Gao, “Two-Dimensional Atom Localization via Interacting Double-Dark Resonances,” J. Opt. Soc. Am. B. 28, 622 (2011).ADSCrossRefGoogle Scholar
- 16.C. Ding, J. Li, X. Yang, D. Zhang, and H. Xiong, “Proposal for Efficient Two-Dimensional Atom Localization Using Probe Absorption in a Microwave-Driven Four-Level Atomic System,” Phys. Rev. A. 84, 043840 (2011).ADSCrossRefGoogle Scholar
- 17.Chunling Ding, Jiahua Li, Rong Yu, Xiangying Hao, and Ying Wu, “High-Precision Atom Localization via Controllable Spontaneous Emission in a Cycle-Configuration Atomic System,” Opt. Exp. 20(7), 7870 (2012).ADSCrossRefGoogle Scholar
- 18.Z. Wang, B. Yu, J. Zhu, Z. Cao, S. Zhen, X. Wu, and F. Xu, “Atom Localization via Controlled Spontaneous Emission in a Five-Level Atomic System,” Ann. Phys. 327, 1132 (2012).ADSCrossRefMATHGoogle Scholar
- 19.R.-G. Wan, T.-Y. Zhang, and J. Kou, “Two-Dimensional Sub-Half-Wavelength Atom Localization via Phase Control of Absorption andGain,” Phys. Rev. A. 87, 043816 (2013).ADSCrossRefGoogle Scholar
- 20.Rahmatullah and S. Qamar, “Two-Dimensional Atom Localization via Probe-Absorption Spectrum,” Phys. Rev. A. 88(1), 013846 (2013).ADSCrossRefGoogle Scholar
- 21.J. C. Wu and B. Q. Ai, “Two-Dimensional Sub-Wavelength Atom Localization in an Electromagnetically Induced Transparency Atomic System,” Europhys. Lett. 107, 14002 (2014).ADSCrossRefGoogle Scholar
- 22.D. Zhang, R. Yu, J. Li, X. Hao, and X. Yang, “Efficient Two-Dimensional Atom Localization via Phase-Sensitive Absorption and Gain Spectra in a Cycle-Configuration Four-Level Atomic System,” Opt. Commun. 321, 138 (2014).ADSCrossRefGoogle Scholar
- 23.T. Shui, Z. Wang, and B. Yu, “Efficient Two-Dimensional Atom Localization via an External Coherent Magnetic Field,” Quantum. Inf. Proc. 14, 929 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
- 24.Z. Wang and B. Yu, “High-Precision Two-Dimensional Atom Localization via Quantum Interference in a Tripod-Type System,” Laser Phys. Lett. 11, 035201 (2014).ADSCrossRefGoogle Scholar
- 25.S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today. 50, 36 (1997).CrossRefGoogle Scholar
- 26.M. D. Lukin, “Colloquium: Trapping and Manipulating Photon States in Atomic Ensembles,” Rev. Mod. Phys. 75, 457 (2003).ADSCrossRefGoogle Scholar
- 27.Y. Wu and X. Yang, “Electromagnetically Induced Transparency in V-, Λ-, and Cascade-Type Schemes Beyond Steady-State Analysis,” Phys. Rev. A. 71, 053806 (2005).ADSCrossRefGoogle Scholar
- 28.A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal Velocity, Causality, and Quantum Noise in Superluminal Light Pulse Propagation,” Phys. Rev. Lett. 86(18), 3925 (2001).ADSCrossRefGoogle Scholar
- 29.J.-H. Li, X.-Y. Lü, J.-M. Luo, and Q.-J. Huang, “Optical Bistability and Multistability via Atomic Coherence in anN-Type AtomicMedium,” Phys. Rev. A. 74, 035801 (2006).ADSCrossRefGoogle Scholar
- 30.Z. Wang, A.-X. Chen, Y. Bai, W.-X. Yang, and R.-K. Lee, “Coherent Control of Optical Bistability in an Open Λ-Type Three-Level Atomic System,” J. Opt. Soc. Am. B. 29, 2891 (2012).ADSCrossRefGoogle Scholar
- 31.H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System,” Phys. Rev. Lett. 87, 073601 (2001).ADSCrossRefGoogle Scholar
- 32.H. R. Hamedi and G. Juzeliuunas, “Phase-Sensitive Kerr Nonlinearity for Closed-Loop Quantum Systems,” Phys. Rev. A. 91, 053823 (2015).ADSCrossRefGoogle Scholar
- 33.Y. Wu and X. Yang, “Highly Efficient Four-Wave Mixing in Double-Λ System in Ultraslow Propagation Regime,” Phys. Rev. A. 70, 053818 (2004).ADSCrossRefGoogle Scholar
- 34.Y. Zhang, A. W. Brown, and M. Xiao, “Matched Ultraslow Propagation of Highly Efficient Four-Wave Mixing in a Closely Cycled Double-Ladder System,” Phys. Rev. A. 74, 053813 (2006).ADSCrossRefGoogle Scholar
- 35.W.-X. Yang, A.-X. Chen, L.-G. Si, K. Jiang, X. Yang, and R.-K. Lee, “Three Coupled Ultraslow Temporal Solitons in a Five-Level Tripod Atomic System,” Phys. Rev. A. 81, 023814 (2010).ADSCrossRefGoogle Scholar
- 36.P. Kumar and Sh. Dasgupta, “Optical Switching and Bistability in Four-Level Atomic Systems,” Phys. Rev. A. 94, 023851 (2016).ADSCrossRefGoogle Scholar
- 37.H. R. Hamedi and S. H. Asadpour, “Realization of Optical Bistability and Multistability in Landau-Quantized Graphene,” J. Appl. Phys. 117, 183101 (2015).ADSCrossRefGoogle Scholar
- 38.F. Ghafoor and R. G. Nazmitdinov, “Triplet Absorption Spectroscopy and Electromagnetically Induced Transparency,” J. Phys. B: At. Mol. Opt. Phys. 49, 175502 (2016).ADSCrossRefGoogle Scholar
- 39.Yihong Qi, Yueping Niu, Fengxue Zhou, Yandong Peng, and Shangqing Gong, “Phase Control of Coherent Pulse Propagation and Switching Based on Electromagnetically Induced Transparency in a Four-Level Atomic System,” J. Phys. B: At. Mol. Opt. Phys. 44, 085502 (2011).ADSCrossRefGoogle Scholar
- 40.Shaopeng Liu, Wen-Xing Yang, Zhonghu Zhu, and Ray-Kuang Lee, “Effective Terahertz Signal Detection via Electromagnetically Induced Transparency in Graphene,” J. Opt. Soc. Am. B. 33(2), 279 (2016).ADSCrossRefGoogle Scholar
- 41.H. R. Hamedi and G. Juzeliūnas, “Phase-Sensitive Atom Localization for Closed-Loop Quantum Systems,” Phys. Rev. A. 94, 013842 (2016).ADSCrossRefGoogle Scholar
- 42.Luling Jin, Dongchao Cheng, and Hui Sun, Yueping Niu, Shiqi Jin, and Shangqing Gong, “Atom Localization in a Four-Level Alkaline Earth Atomic System,” J. Mod. Opt. 55, 155 (2008).ADSCrossRefMATHGoogle Scholar
- 43.V. S. Ivanov, Yu. V. Rozhdestvensky, and K.-A. Suominen, “Three-Dimensional Atom Localization by Laser Fields in a Four-Level Tripod System,” Phys. Rev. A. 90, 063802 (2014).ADSCrossRefGoogle Scholar
- 44.Lei Yang, Dewei Cao, Yu Wang, Zhiping Wang, and Benli Yu, “Three-Dimensional Sub-Half-Wavelength Atom Localization via Interacting Double-Dark Resonances,” Laser Phys. 26, 115501 (2016).ADSCrossRefGoogle Scholar
- 45.Zhiping Wang and Benli Yu, “High-Precision Three-Dimensional Atom Localization via Spontaneous Emission in a Four-Level Atomic System,” Laser Phys. Lett. 13, 065203 (2016).ADSCrossRefGoogle Scholar
- 46.Zhonghu Zhu, Wen-Xing Yang, Ai-Xi Chen, Shaopeng Liu, and Ray-Kuang Lee, “Dressed-State Analysis of Efficient Three-Dimensional Atom Localization in a Ladder-Type Three-Level Atomic System,” Laser Phys. 26, 075203 (2016).ADSCrossRefGoogle Scholar
- 47.Zhiping Wang and Benli Yu, “Efficient Three-Dimensional Atom Localization via Probe Absorption,” J. Opt. Soc. Am. B. 32(7), 1281 (2015).ADSCrossRefGoogle Scholar
- 48.H. R. Hamedi and M. R. Mehmannavaz, “Phase Control of Three-Dimensional Atom Localization in a Four-Level Atomic System in Lambda Configuration,” J. Opt. Soc. Am. B. 33(1), 41 (2016).ADSCrossRefGoogle Scholar
- 49.J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, “Collective Many-Body Interaction in Rydberg Dressed Atoms,” Phys. Rev. Lett. 105, 160404 (2010).ADSCrossRefGoogle Scholar
- 50.M. Saffman, T. G. Walker, and K. Mølmer, “Quantum Information with Rydberg Atoms,” Rev. Mod. Phys. 82, 2313 (2010).ADSCrossRefGoogle Scholar
- 51.A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent Optical Detection of Highly Excited Rydberg States Using Electromagnetically Induced Transparency,” Phys. Rev. Lett. 98, 113003 (2007).ADSCrossRefGoogle Scholar
- 52.D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically Induced Transparency with Rydberg Atoms,” Phys. Rev. Lett. 107, 213601 (2011).ADSCrossRefGoogle Scholar
- 53.J. Ruseckas, I. A. Yu, and G. Juzeliūnas, “Creation of Two-Photon States via Interactions between Rydberg Atoms During Light Storage,” Phys. Rev. A. 95, 023807 (2017).ADSCrossRefGoogle Scholar
- 54.C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-Photon Electromagnetically Induced Transparency Using Rydberg States,” Opt. Lett. 37(18), 3858 (2012).ADSCrossRefGoogle Scholar
- 55.V. Bharti and V. Natarajan, “Sub-and Super-Luminal Light Propagation Using a Rydberg State,” Opt. Commun. 392, 180 (2017).ADSCrossRefGoogle Scholar
- 56.V. Bharti, A. Wasan, and V. Natarajan, “Wavelength Mismatch Effect in Electromagnetically Induced Absorption,” Phys. Lett. A. 380, 2390 (2016).ADSCrossRefGoogle Scholar
- 57.V. Bharti and V. Natarajan, “Study of a Four-Level System in Vee + Ladder Configuration,” Opt. Commun. 356, 510 (2015).ADSCrossRefGoogle Scholar
- 58.H. R. Hamedi, M. Sahrai, H. Khoshsima, and G. JuzeliŪnas, “Optical Bistability Forming Due to a Rydberg State,” J. Opt. Soc. Am. B. 34(9), 1923 (2017).ADSCrossRefGoogle Scholar
- 59.M. S. I. Pierre Meystre, Elements of Quantum Optics (Springer, Berlin, 1999).CrossRefMATHGoogle Scholar
- 60.M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).CrossRefMATHGoogle Scholar