Advertisement

Physics of Wave Phenomena

, Volume 26, Issue 1, pp 41–46 | Cite as

Production and Laser Characteristics of Fe2+:ZnS x Se1−x Polycrystals

  • K. N. Firsov
  • E. M. Gavrishchuk
  • V. B. Ikonnikov
  • S. Yu. Kazantsev
  • I. G. Kononov
  • T. V. Kotereva
  • D. V. Savin
  • N. A. Timofeeva
Lasers on Chalcogenides Doped With Transition Metal Ions
  • 17 Downloads

Abstract

A method is developed for producing active laser elements (spectrum range 4 to 5 μm) based on polycrystalline solid solutions ZnS x Sex-1 doped with iron ions. Bilateral diffusion doping of the elements by Fe2+ ions is performed during hot isostatic pressing. Spectral and energy characteristics of the laser are investigated with the Fe2+:ZnS0.1Se0.9 active element kept at room temperature. It is found that the absorption band of the Fe2+:ZnS0.1Se0.9 crystal is blueshifted with respect to the Fe2+:ZnSe absorption band, while the lasing spectra of the Fe2+:ZnSe and Fe2+:ZnS0.1Se0.9 lasers and their energy parameters are almost identical. The lasing energy of 580 mJ is obtained at the slope efficiency with respect to the absorbed energy of 46%. Further increase in the lasing energy is limited by development of transversal parasitic oscillation at a large size of the pump beam spot.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Adams, C. Bibeau, R. H. Page, D. M. Krol, L. H. Furu, and S. A. Payne, “4. 0−4. 5 μm Lasing of Fe:ZnSe Below 180K, a New Mid-Infrared Laser Material,” Opt. Lett. 24(3), 1720 (1999).ADSCrossRefGoogle Scholar
  2. 2.
    J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3. 9−4. 8 μm Gain-Switched Lasing of Fe2+:ZnSe at Room Temperature,” Opt. Exp. 13, 10608 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Akimov, A. A. Voronov, V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Efficient Lasing in a Fe2+:ZnSe Crystal at Room Temperature,” Quantum Electron. 36(4), 299 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    N. N. Il’ichev, V. P. Danilov, V. P. Kalinushkin, M. I. Studenikin, P. V. Shapkin, and A. S. Nasibov, “Superluminescent Room-Temperature Fe2+:ZnSe IR Radiation Source,” Quantum Electron. 38(2), 95 (2008).CrossRefGoogle Scholar
  5. 5.
    M. E. Doroshenko, H. Jelinkova, P. Koranda, J. Sulc, T. T. Basiev, V. V. Osiko, V. K. Komar, A. S. Gerasimenko, V. M. Puzikov, V. V. Badikov, and D. V. Badikov, “Tunable Mid-Infrared Laser Properties of Cr2+:ZnMgSe and Fe2+:ZnSe Crystals,” Laser Phys. Lett. 7(1), 38 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    NoSoung Myoung, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Energy Scaling of 4. 3 μm Room Temperature Fe:ZnSe Laser,” Opt. Lett. 36(1), 94 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Kozlovsky, Yu. V. Korostelin, A. I. Landman, V. V. Mislavskii, Yu. P. Podmar’kov, Ya. K. Skasyrsky, and M. P. Frolov, “Pulsed Fe2+:ZnS Laser Continuously Tunable in the Wavelength Range of 3. 49−4. 65 μm,” Quantum Electron. 41(1), 1 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, Yu. P. Podmar’kov, and S. A. Savinova, “3 J Pulsed Fe:ZnS Laser Tunable from 3. 44 to 4. 19 μm,” Laser Phys. Lett. 12, 055001 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “High-Energy Room-Temperature Fe2+:ZnS Laser,” Laser Phys. Lett. 13(1), 015001 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Energy and Spectral Characteristics of a Room-Temperature Pulsed Laser on ZnS:Fe2+ Polycrystal,” Laser Phys. Lett. 13(4), 045004 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, V. V. Mislavskii, Yu. P. Podmar’kov, S. A. Savinova, and Ya. K. Skasyrsky, “Study of a 2-J Pulsed Fe:ZnSe 4-μm Laser,” Laser Phys. Lett. 10, 125001 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, and S. V. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe-Doped II−VI Chalcogenides,” IEEE J. Select. Top. Quantum Electron. 21, 1601719 (2015).CrossRefGoogle Scholar
  13. 13.
    S. D. Velikanov, V. P. Danilov, N. G. Zakharov, N. N. Il’ichev, S. Yu. Kazantsev, V. P. Kalinushkin, I. G. Kononov, A. S. Nasibov, M. I. Studenikin, P. P. Pashinin, K. N. Firsov, P. V. Shapkin, and V. V. Shchurov, “Fe2+:ZnSe Laser Pumped by a Nonchain Electric-Discharge HF Laser at Room Temperature,” Quantum Electron. 44(2), 141 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, and K. N. Firsov, “Room-Temperature High-Energy Fe2+:ZnSe Laser,” Quantum Electron. 44(6), 505 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    K. N. Firsov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, and S. A. Rodin, “Increasing the Radiation Energy of ZnSe:Fe2+ Laser at Room Temperature,” Laser Phys. Lett. 11, 085001 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    K. N. Firsov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, A. A. Maneshkin, G. M. Mishchenko, S. M. Nefedov, S. A. Rodin, S. D. Velikanov, I. M. Yutkin, N. A. Zaretsky, and E. A. Zotov, “Spectral and Temporal Characteristics of ZnSe:Fe2+ Laser Pumped by Non-Chain HF(DF) Laser at Room Temperature,” Laser Phys. Lett. 11(12), 125004 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    S. D. Velikanov, N. A. Zaretskii, E. A. Zotov, V. I. Kozlovskii, Yu. V. Korostelin, O. N. Krokhin, A. A. Maneshkin, Yu. P. Podmar’kov, S. A. Savinova, Ya. K. Skasyrskii, M. P. Frolov, R. S. Chuvatkin, and I. M. Yutkin, “Investigation of Fe:ZnSe Laser in Pulsed and Repetitively Pulsed Regimes,” Quantum Electron. 45(1), 1 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    J. W. Evans, P. A. Berry, and K. L. Schepler, “840mW Continuous-Wave Fe:ZnSe Laser Operating at 4140 nm,” Opt. Lett. 37(23), 5021 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    N. S. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and Concentration Quenching of Mid-IR Photoluminescence in Iron Doped ZnSe and ZnS Laser Crystals,” J. Lumin. 132(3), 600 (2012).CrossRefGoogle Scholar
  20. 20.
    K. N. Firsov, M. P. Frolov, E. M. Gavrishchuk, S. Yu. Kazantsev, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, S. D. Velikanov, I. M. Yutkin, N. A. Zaretsky, and E. A. Zotov, “Laser on Single-Crystal ZnSe:Fe2+ with High Pulse Radiation Energy at Room Temperature,” Laser Phys. Lett. 13(1), 015002 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “Room-Temperature Laser on a ZnSe:Fe2+ Polycrystal with Undoped Faces, Exited by an Electrodischarge HF Laser,” Laser Phys. Lett. 13(5), 055002 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, S. A. Rodin, D. V. Savin, N. A. Timofeeva, and K. N. Firsov, “Scaling of Energy Characteristics of Polycrystalline Fe2+:ZnSe Laser at Room Temperature,” Quantum Electron. 45(9), 823 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. B. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “High Average Power Fe:ZnSe and Cr:ZnSe Mid-IR Solid State Lasers,” in Advanced Solid State Lasers Conference (Berlin, Germany, 2015), AW4A. 1.Google Scholar
  24. 24.
    S. D. Velikanov, N. A. Zaretsky, E. A. Zotov, S. Yu. Kazantsev, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, K. N. Firsov, M. P. Frolov, and I. M. Yutkin, “Room-Temperature 1. 2-J Fe2+:ZnSe Laser,” Quantum Electron. 46(1), 11 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, S. A. Rodin, D. V. Savin, and N. A. Timofeeva, “Room-Temperature Laser on a ZnS:Fe2+ Polycrystal with a Pulse Radiation Energy of 0. 6 J,” Laser Phys. Lett. 13(6), 065003 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    S. D. Velikanov, A. E. Dormidonov, N. A. Zaretsky, S. Yu. Kazantsev, V. I. Kozlovsky, I. G. Kononov, Yu. V. Korostelin, A. A. Maneshkin, Yu. P. Podmar’kov, Ya. K. Skasyrsky, K. N. Firsov, M. P. Frolov, and I. M. Yutkin, “Room-Temperature Fe2+:ZnS Single Crystal Laser Pumped by an Electric-Discharge HF Laser,” Quantum Electron. 46(9), 769 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    S. D. Velikanov, E. M. Gavrishchuk, N. A. Zaretsky, A. V. Zakhryapa, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, A. A. Maneshkin, D. A. Mashkovskii, E. V. Saltykov, K. N. Firsov, R. S. Chuvatkin, and I. M. Yutkin, “Repetitively Pulsed Fe:ZnSe Laser with an Average Output Power of 20W at Room Temperature of the Polycrystalline Active Element,” Quantum Electron. 47(4), 303 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-Efficiency Room-Temperature ZnSe:Fe2+ Laser with a High Pulsed Radiation Energy,” Appl. Phys. B. 122(8), 211 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Kozlovsky, Y. V. Korostelin, Y. P. Podmar’kov, Y. K. Skasyrsky, and M. P. Frolov, “Efficient 10-J Pulsed Fe:ZnSe Laser at 4100 nm,” J. Phys. Conf. Ser. 740, 012006 (2016).CrossRefGoogle Scholar
  30. 30.
    S. B. Mirov, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, M. S. Mirov, O. Gafarov, A. Martinez, J. Peppers, V. Smolski, S. Vasilyev, and V. Gapontsev, “Mid-IR Gain Media Based on Transition Metal Doped II−VI Chalcogenides,” Proc. SPIE. 9744, 97440A-1 (2014) [DOI: 10. 1117/12. 2212822].Google Scholar
  31. 31.
    I. T. Sorokina, E. Sorokin, A. Di Lieto, M. Tonelli, B. N. Mavrin, and E. A. Vinogradov, “A New Broadly Tunable Room-Temperature Continuous-Wave Cr2+:ZnSxSe1-x,” Adv. Solid-State Photon. (TOPS). 98, 263 (2005) [DOI: 10. 1364/ASSP. 2005. 263].CrossRefGoogle Scholar
  32. 32.
    T. P. Surkova, P. Kaczor, A. J. Zakrzewski, K. Swiatek, V. Yu. Ivanov, M. Godlewski, A. Polimeni, L. Eaves, and W. Giriat, “Optical Properties of ZnSe, ZnCdSe and ZnSSe Alloys Doped with Iron,” J. Crystal Growth. 214/215, 576 (2000).ADSCrossRefGoogle Scholar
  33. 33.
    E. L. Barsukova, L. I. Postnova, and V. I. Levchenko, “Growth of ZnSe1-xSx Solid Solution Crystals from Vapor Phase,” Crystallogr. Rep. 54(7), 1245 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    E. L. Barsukova, L. I. Postnova, and V. I. Levchenko, “Thermal Diffusion of Chromium in ZnSxSe1-x,” Izv. VUZov. Materialy Elektronnoy Tekhniki. N1, 31 (2007) [in Russian].Google Scholar
  35. 35.
    E. M. Gavrishchuk, D. V. Savin, and V. B. Ikonnikov, “CVD-Growth of ZnSxSe1-x with Subsequent Hot Isostatic Pressing,” Surface Coatings Technol. 201(22−23), 9385 (2007).CrossRefGoogle Scholar
  36. 36.
    E. M. Gavrishchuk, D. V. Savin, and V. B. Ikonnikov, “Variation in Properties CVD-ZnSxSe1-x with Composition,” ECS Trans. 25(8), 301 (2009).CrossRefGoogle Scholar
  37. 37.
    E. M. Gavrishchuk, D. V. Savin, V. B. Ikonnikov, S. M. Mazavin, A. I. Suchkov, and A. I. Kirillov, “Preparation of Monolithic ZnSxSe1-x Layers Via Chemical Vapor Deposition Followed byHot Isostatic Pressing,” Inorg. Mater. 42, 839 (2006).CrossRefGoogle Scholar
  38. 38.
    S. N. Andreev, K. N. Firsov, S. Yu. Kazantsev, I. G. Kononov, and A. A. Samokhin, “Explosive Boiling of Water Induced by the Pulsed HF-Laser Radiation,” Laser Phys. 17(6), 834 (2007).ADSCrossRefGoogle Scholar
  39. 39.
    S. N. Andreev, N. N. Il’ichev, K. N. Firsov, S. Yu. Kazantsev, I. G. Kononov, L. A. Kulevskii, and P. P. Pashinin, “Generation of an Electrical Signal upon the Interaction of Laser Radiation with Water Surface,” Laser Phys. 17(8), 1041 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • K. N. Firsov
    • 1
    • 2
  • E. M. Gavrishchuk
    • 3
    • 4
  • V. B. Ikonnikov
    • 3
  • S. Yu. Kazantsev
    • 1
  • I. G. Kononov
    • 1
  • T. V. Kotereva
    • 3
  • D. V. Savin
    • 3
  • N. A. Timofeeva
    • 3
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Devyatykh Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhny NovgorodRussia
  4. 4.Lobachevsky State University of Nizhniy NovgorodNizhniy NovgorodRussia

Personalised recommendations