Physics of Wave Phenomena

, Volume 26, Issue 1, pp 21–35 | Cite as

Laser Diagnostics of the Mesoscale Heterogeneity of Aqueous Solutions of Polar Organic Compounds

  • N. F. Bunkin
  • G. A. Lyakhov
  • A. V. Shkirin
  • S. V. Krivokhizha
  • A. A. Afonin
  • A. V. Kobelev
  • N. V. Penkov
  • E. E. FesenkoJr.
Laser Methods for Studying Phase Transitions in Liquid Solutions


A mesoscale droplet phase, which is spontaneously formed in aqueous solutions of some polar organic compounds, has been experimentally investigated by methods of dynamic light scattering and laser phase microscopy. It is shown that tetrahydrofuran and tert-butanol aqueous solutions demonstrate a strong peak of light scattering intensity in the range of molecular concentrations of about 0.02 to 0.08, which corresponds to inhomogeneities with a characteristic size of about 100 nm. These liquid droplets are enriched with molecules of dissolved substance. A similar light scattering peak for aqueous solutions of glycerol and ethylene glycol is less pronounced. A theoretical model of the phase separation of binary solutions with twinkling (i.e., existing for a finite time) intermolecular hydrogen bonds is developed. The model predicts the existence of an additional low-concentration light scattering peak near the spinodal of the solution free of hydrogen bonds. A characterization of solutions according to the numerical values of twinkling hydrogen bond parameters is outlined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Vuks and L. V. Shurupova, “The Scattering of Light and Phase Transition in Solutions of Tertiary Butyl Alcohol in Water,” Opt. Commun. 5(4), 277 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    M. F. Vuks, L. I. Lisnyanskii, and L. V. Shurupova, “Concentration Fluctuations and Light Scattering in Aqueous Solutions of Propyl Alcohols,” in Water in Biological Systems. Ed. by M. F. Vuks, (Springer, N. Y., 1971).Vol. 2.Google Scholar
  3. 3.
    M. F. Vuks, Light Scattering in Gases, Liquids, and Solutions (Leningrad State Univ., Leningrad, 1977) [in Russian].Google Scholar
  4. 4.
    K. Iwasaki and T. Fujiyama, “Light-Scattering Study of Clathrate Hydrate Formation in BinaryMixtures of Tert-Butyl Alcohol and Water,” J. Phys. Chem. 81, 1908 (1977).CrossRefGoogle Scholar
  5. 5.
    K. Iwasaki and T. Fujiyama, “Light-Scattering Study of Clathrate Hydrate Formation in BinaryMixtures of Tert-Butyl Alcohol and Water. Temperature Effect,” J. Phys. Chem. 83, 463 (1979).CrossRefGoogle Scholar
  6. 6.
    N. Ito, T. Kato, and T. Fujiyama, “Determination of Local Structure and Moving Unit Formed in Binary Solution of f-Butyl Alcohol and Water,” Bull. Chem. Soc. Jpn. 54, 2573 (1981).CrossRefGoogle Scholar
  7. 7.
    S. Samal and K. Geckeler, “Unexpected Solute Aggregation in Water on Dilution,” Chem. Commun. 21, 2224 (2001).CrossRefGoogle Scholar
  8. 8.
    S. Y. Lo, X. Geng, and D. Gann, “Evidence for the Existence of StableWater Clusters at Room Temperature and Normal Pressure,” Phys. Lett. A. 373, 3872 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    A. I. Rusanov and A. G. Nekrasov, “One More Extreme near the Critical Micelle Concentration: Optical Activity,” Langmuir. 26, 13767 (2010).CrossRefGoogle Scholar
  10. 10.
    A. I. Konovalov and I. S. Ryzhkina, “Highly Diluted Aqueous Solutions: Formation of Nano-Sized Molecular Assemblies (Nanoassociates),” Geochem. Int. 52, 1207 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Sedlák and D. Rak, “Large-Scale Inhomogeneities in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: Supramolecular Structures or Nanobubbles?” J. Phys. Chem. B. 117, 2495 (2013).CrossRefGoogle Scholar
  12. 12.
    M. N. Rodnikova, Yu. A. Zakharova, D. B. Kayumova, and I. A. Solonina, “Light Scattering in Aqueous Solutions of Tetrahydrofuran,” Russ. J. Phys. Chem. A. 84(3), 518 (2010).CrossRefGoogle Scholar
  13. 13.
    V. Ya. Gotsulskiy, V. E. Chechko, and Yu. A. Melnik, “The Origin of Light Scattering by Aqueous Solutions of Alcohols in Vicinities of Their Singular Points,” Ukr. J. Phys. 60(8), 780 (2015).CrossRefGoogle Scholar
  14. 14.
    D. Subramanian and M. A. Anisimov, “Resolving the Mystery of Aqueous Solutions of Tertiary Butyl Alcohol,” J. Phys. Chem. B. 115(29), 9179 (2011).CrossRefGoogle Scholar
  15. 15.
    D. Subramanian, C. T. Boughter, J. B. Klauda, B. Hammouda, and M. A. Anisimov, “Mesoscale Inhomogeneities in Aqueous Solutions of Small Amphiphilic Molecules,” Faraday Discuss. 167, 217 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    A. E. Robertson, D. H. Phan, J. E. Macaluso, V. N. Kuryakov, I. K. Yudin, E. V. Jouravleva, C. E. Bertrand, and M. A. Anisimov, “Mesoscale Solubilization and Critical Phenomena in Binary And Quasi-Binary Solutions of Hydrotropes,” Fluid Phase Equil. 407, 243 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Gupta and G. N. Pateya, “Structure and Aggregation in Model Tetramethylurea Solutions,” J. Chem. Phys. 141, 064502 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    N. F. Bunkin, G. A. Lyakhov, A. V. Shkirin, A. V. Kobelev, N. V. Penkov, S. V. Ugraitskaya, E. E. Fesenko, Jr., “Study of the Submicron Heterogeneity of Aqueous Solutions of Hydrogen-Bond Acceptor Molecules by Laser Diagnostics Methods,” Phys. Wave Phenom. 23(4), 241 (2015) [DOI: 10. 3103/S1541308X15040019].ADSCrossRefGoogle Scholar
  19. 19.
    N. F. Bunkin, A. V. Shkirin, G. A. Lyakhov, A. V. Kobelev, N. V. Penkov, S. V. Ugraitskaya, and E. E. Fesenko, Jr. “Droplet-Like Heterogeneity of Aqueous Tetrahydrofuran Solutions at the Submicrometer Scale,” J. Chem. Phys. 145, 184501 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 5: Fluid Mechanics (Pergamon, Oxford, 1987).Google Scholar
  21. 21.
    P. C. Senanayake, N. Gee, and G. R. Freeman, “Viscosity and Density of Isomeric Butanol/Water Mixtures As Functions of Composition and Temperature,” Can. J. Chem. 65, 2441 (1987)CrossRefGoogle Scholar
  22. 22.
    K. R. Harris and L. A. Woolf, “Viscosity of Water + Tert-Butyl Alcohol (2-Methyl-2-Propanol) Mixtures at Low Temperatures and High Pressure,” J. Chem. Eng. Data. 54, 581 (2009).CrossRefGoogle Scholar
  23. 23.
    B. Das, M. N. Roy, and D. K. Hazra, “Densities and Viscosities of the Binary Aqueous Mixtures of Tetrahydrofuran and 1,2-Dimethoxyethane at 298, 308, and 318K,” Indian J. Chem. Technol. 1, 93 (1994).Google Scholar
  24. 24.
    S. Akhtar, M. M. H. Bhuiyan, M. S. Uddin, B. S. M. Nessa, and M. A. Saleh, “Viscosity of Aqueous Solutions of Some Alcohols,” Phys. Chem. Liq. 37, 215 (1999).CrossRefGoogle Scholar
  25. 25.
    M. A. Saleh, S. Akhtar, M. S. Ahmed, and M. H. Uddin, “Viscosities of Aqueous Solutions of Dimethylsulfoxide, 1,4-Dioxane and Tetrahydrofuran,” Phys. Chem. Liq. 39, 551 (2001).CrossRefGoogle Scholar
  26. 26.
    J. B. Secur and H. E. Oberstak, “Viscosity of Glycerol and Its Aqueous Solutions,” Indust. Eng. Chem. 43(9), 2117 (1951).CrossRefGoogle Scholar
  27. 27.
    MEGlobal, Ethylene Glycol. Product Guide (The MEGlobal Group of Companies, London, UK, 2008).Google Scholar
  28. 28.
    J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946).zbMATHGoogle Scholar
  29. 29.
    I. Z. Fisher, Statistical Theory of Liquids (Chicago University, Chicago, 1964).Google Scholar
  30. 30.
    D. Eizenberg and W. Kautzmann, The Structure and Properties of Water (Oxford University Press, Oxford, 1969).Google Scholar
  31. 31.
    R. F. Pawula, “The Probability Density and Level-Crossings of First Order Nonlinear Systems Driven by the Random Telegraph Signal,” Int. J. Control. 25, 283 (1977).CrossRefGoogle Scholar
  32. 32.
    K. Kitahara, W. Horsthemke, and R. Lefever, “Coloured-Noise-Indused Transitions: Exact Results for External Dichotomous Markovian Noise,” Phys. Lett. A. 70, 377 (1979).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    K. Kitahara, W. Horsthemke, R. Lefever, and Y. Inaba, “Phase Diagram of Noise Induced Transitions. Exact Results for a Class of External ColouredNoise,” Prog. Theor. Phys. 64, 1233 (1980).ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer-Verlag, Berlin, Hidelberg, N. Y., Tokyo, 1984).zbMATHGoogle Scholar
  35. 35.
    G. A. Lyakhov, “Lower Critical Point for Stratification of a Liquid Solution: Dependence on the Energy and Lifetime of Intermolecular Bonds,” JETP Lett. 60, 99 (1994).ADSGoogle Scholar
  36. 36.
    A. A. Sobyanin, “General Properties of Systems with a “Double” Critical Point,” Sov. Phys.-Usp. 29, 570 (1986).ADSCrossRefGoogle Scholar
  37. 37.
    I. L. Fabelinskii, S. V. Krivokhizha, and L. L. Chaikov, “Experimental Studies of Solutions with a “Double” Critical Point,” Sov. Phys.-Usp. 29, 572 (1986).ADSCrossRefGoogle Scholar
  38. 38.
    K. V. Kovalenko, S. V. Krivokhizha, I. L. Fabelinskii, and L. L. Chaikov, “Some Features of Phase Transitions in Solutions with Two Critical Points,” Phys. Usp. 39(6), 635 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    N. B. Lyakhova, A. V. Shkirin, and G. A. Lyakhov, “Stochastic Approach to the Theory of Stratification of Water and Aqueous Solutions: A Model of Twinkling Hydrogen Bonds,” Phys. Wave Phenom. 24(2), 142 (2016) [DOI: 10. 3103/S1541308X16020096].ADSCrossRefGoogle Scholar
  40. 40.
    A. A. Vedenov, Physics of Solutions (Nauka, Moscow, 1984) [in Russian].zbMATHGoogle Scholar
  41. 41.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 10: Physical Kinetics (Pergamon, Oxford, 1981).Google Scholar
  42. 42.
    L. R. Snyder, “Classification of the Solvent Properties of Common Liquids,” J. Chromatogr. A. 92(2), 223 (1974).CrossRefGoogle Scholar
  43. 43.
    C. Reichardt, Solvents and Solvent Effects in Organic Chemistry (Wiley-VCH Publ., Weinheim, 2003).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. F. Bunkin
    • 1
    • 2
  • G. A. Lyakhov
    • 2
  • A. V. Shkirin
    • 2
    • 3
  • S. V. Krivokhizha
    • 4
  • A. A. Afonin
    • 5
  • A. V. Kobelev
    • 5
  • N. V. Penkov
    • 5
  • E. E. FesenkoJr.
    • 5
  1. 1.Bauman State Technical UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Lebedev Physics Institute, Russian Academy of SciencesMoscowRussia
  5. 5.Institute of Cell BiophysicsRussian Academy of SciencesMoscow regionRussia

Personalised recommendations