Physics of Wave Phenomena

, Volume 26, Issue 1, pp 1–8 | Cite as

Temporal and Spectral Characterization of Breakdown Plasma Induced by Laser Radiation in Colloidal Solutions of Gold Nanoparticles

  • I. I. Rakov
  • A. A. Serkov
Interaction of Optical Radiation With Matter


Temporal and spectral characteristics of laser-induced breakdown plasma in colloidal solutions of gold nanoparticles were experimentally studied. Near-infrared laser sources of nanosecond pulses were used. It was shown that under certain experimental conditions nanosized plasma around nanoparticles might change to laser-induced breakdown plasma in liquid. The dependencies of the plasma temporal and spectral characteristics on laser pulse duration as well as resulting nanoparticles properties were studied. Laser-induced breakdown plasma lifetime was shown to be comparable with laser pulse duration. The efficiency of gold nanoparticles fragmentation was shown to depend on laser pulse duration. Similar experiments were carried out under reduced external pressure. It turned out to affect the properties of both plasma plume and nanoparticles. Transmission electron microscopy and disc measuring centrifuge were used for nanoparticle morphology and size analysis. Extinction spectra of colloidal solutions and emission spectra of plasma were studied by means of optical spectroscopy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant,” J. Phys. Chem. B. 105(22), 5114 (2001) [DOI: 10. 1021/jp0037091].CrossRefGoogle Scholar
  2. 2.
    M. Procházka, P. Mojzeš, J. Štĕpánek, B. Vlčková, and P. -Y. Turpin, “Probing Applications of Laser-Ablated Ag Colloids in SERS Spectroscopy: Improvement of Ablation Procedure and SERS Spectral Testing,” Anal. Chem. 69(24), 5103 (1997).CrossRefGoogle Scholar
  3. 3.
    S. Inasawa, M. Sugiyama, S. Noda, and Y. Yamaguchi, “Spectroscopic Study of Laser-Induced Phase Transition of Gold Nanoparticles on Nanosecond Time Scales and Longer,” J. Phys. Chem. B. 110(7), 3114 (2006) [DOI: 10. 1021/jp057175l].CrossRefGoogle Scholar
  4. 4.
    P. G. Kuzmin, G. A. Shafeev, A. A. Serkov, N. A. Kirichenko, and M. E. Shcherbina, “Laser-Assisted Fragmentation of Al Particles Suspended in Liquid,” Appl. Surf. Sci. 294, 15 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    F. Bozon-Verduraz, R. Brayner, V. V. Voronov, N. A. Kirichenko, A. V. Simakin, and G. A. Shafeev, “Production of Nanoparticles by Laser-Induced Ablation of Metals in Liquids,” Quantum Electron. 33(8), 714 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kawasaki and N. Nishimura, “1064-nm Laser Fragmentation of Thin Au and Ag Flakes in Acetone for Highly Productive Pathway to Stable Metal Nanoparticles,” Appl. Surf. Sci. 253(4), 2208 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    S. Inasawa, M. Sugiyama, and Y. Yamaguchi, “Laser-Induced Shape Transformation of Gold Nanoparticles below the Melting Point: The Effect of Surface Melting,” J. Phys. Chem. B. 109(8), 3104 (2005) [DOI: 10. 1021/jp045167j].CrossRefGoogle Scholar
  8. 8.
    P. Grua, J. P. Morreeuw, H. Bercegol, G. Jonusauskas, and F. Vallée, “Electron Kinetics and Emission for Metal Nanoparticles Exposed to Intense Laser Pulses,” Phys. Rev. B. 68(3), 035424 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    K. Yamada, Y. Tokumoto, T. Nagata, and F. Mafuné, “Mechanism of Laser-Induced Size-Reduction of Gold Nanoparticles As Studied by Nanosecond Transient Absorption Spectroscopy,” J. Phys. Chem. B. 110(24), 11751 (2006) [DOI: 10. 1021/jp061020b].CrossRefGoogle Scholar
  10. 10.
    L. Delfour and T. E. Itina, “Mechanisms of Ultrashort Laser-Induced Fragmentation of Metal Nanoparticles in Liquids: Numerical Insights,” J. Phys. Chem. C. 119(24), 13893 (2015) [DOI: 10. 1021/acs. jpcc. 5b02084].CrossRefGoogle Scholar
  11. 11.
    P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation,” J. Phys. Chem. B. 102(17), 3123 (1998) [DOI: 10. 1021/jp980009b].CrossRefGoogle Scholar
  12. 12.
    M. Shoji, K. Miyajima, and F. Mafuné, “Ionization of Gold Nanoparticles in Solution by Pulse Laser Excitation As Studied by Mass Spectrometric Detection of Gold Cluster Ions,” J. Phys. Chem. C. 112(6), 1929 (2008) [DOI: 10. 1021/jp077503c].CrossRefGoogle Scholar
  13. 13.
    H. Muto, K. Miyajima, and F. Mafuné, “Mechanismof Laser-Induced Size Reduction of Gold Nanoparticles As Studied by Single and Double Laser Pulse Excitation,” J. Phys. Chem. C. 112(15), 5810 (2008) [DOI: 10. 1021/jp711353m].CrossRefGoogle Scholar
  14. 14.
    J. A. Creighton and D. G. Eadon, “Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements,” J. Chem. Soc. Faraday Trans. 87(24), 3881 (1991).CrossRefGoogle Scholar
  15. 15.
    J. Noack and A. Vogel, “Laser-Induced Plasma Formation inWater at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density,” IEEE J. Quantum Electron. 35(8), 1156 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    É. Boulais, R. Lachaine, and M. Meunier, “Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation,” Nano Lett. 12(9), 4763 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    B. Verhoff, S. S. Harilal, J. R. Freeman, P. K. Diwakar, and A. Hassanein “Dynamics of Femto-and Nanosecond Laser Ablation Plumes Investigated Using Optical Emission Spectroscopy,” J. Appl. Phys. 112(9), 093303 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    P. Liu, C. X. Wang, X. Y. Chen, and G. W. Yang, “Controllable Fabrication and Cathodoluminescence Performance of High-Index Facets GeO2 Micro-and Nanocubes and Spindles upon Electrical-Field-Assisted Laser Ablation in Liquid,” J. Phys. Chem. C. 112(35), 13450 (2008) [DOI: 10. 1021/jp802529r].CrossRefGoogle Scholar
  19. 19.
    Y. Liang, P. Liu, and G. Yang, “Fabrication of One-Dimensional Chain of Iron-Based Bimetallic Alloying Nanoparticles with Unique Magnetizations,” Cryst. Growth Design. 14(11), 5847 (2014) [DOI: 10. 1021/cg501079a].CrossRefGoogle Scholar
  20. 20.
    A. A. Serkov, I. I. Rakov, A. V. Simakin, P. G. Kuzmin, G. A. Shafeev, G. N. Mikhailova, L. Kh. Antonova, A. V. Troitskii, and G. P. Kuzmin, “Influence of External Magnetic Field on Laser-Induced Gold Nanoparticles Fragmentation,” Appl. Phys. Lett. 109(5), 053107 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    G. A. Shafeev, Laser-Based Formation of Nanoparticles in Lasers in Chemistry, Vol. 2: Influencing Matter (Wiley, Wienheim, 2008), p. 713.Google Scholar
  22. 22.
    A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales,” Appl. Phys. B. 68(2), 271 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-Induced Breakdown in Aqueous Media,” Prog. Quantum Electron. 21(3), 155 (1997) [DOI: 10. 1016/S0079-6727(97)00002-5].ADSCrossRefGoogle Scholar
  24. 24.
    E. C. Jung and H. R. Cho, The Delivery of Nanoparticles (INTECH Open Access Publ., 2012).Google Scholar
  25. 25.
    S. Y. Izumida, K. Y. Onishi, and M. Saito, “Estimation of Laser-Induced Breakdown Threshold of Microparticles in Water,” Jpn. J. Appl. Phys. 37(4A), 2039 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    D. Werner, T. Ueki, and Sh. Hashimoto, “Methodological Improvement in Pulsed Laser-Induced Size Reduction of Aqueous Colloidal Gold Nanoparticles by Applying High Pressure,” J. Phys. Chem. C. 116(9), 5482 (2012) [DOI: 10. 1021/jp300690z].CrossRefGoogle Scholar
  27. 27.
    Sh. Hashimoto, T. Katayama, K. Setoura, M. Strasser, T. Uwada, and H. Miyasaka, “Laser-Driven Phase Transitions in Aqueous Colloidal Gold Nanoparticles under High Pressure: Picosecond Pump-Probe Study,” Phys. Chem. Chem. Phys. 18, 4994 (2016).CrossRefGoogle Scholar
  28. 28.
    N. A. Kirichenko, M. E. Shcherbina, A. A. Serkov, and I. I. Rakov, “Transport Equation in the Problem of the Distribution Function of Nanoparticles in a Colloidal Solution Exposed to Laser Pulses,” Quantum Electron. 45(12), 1161 (2015) [DOI: 10. 1070/QE2015v045n12ABEH015864].ADSCrossRefGoogle Scholar
  29. 29.
    B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chem. Mater. 15(10), 1957 (2003).CrossRefGoogle Scholar
  30. 30.
    A. A. Serkov, M. E. Shcherbina, P. G. Kuzmin, and N. A. Kirichenko, “Laser-Induced Agglomeration of Gold Nanoparticles Dispersed in a Liquid,” Appl. Surf. Sci. 336(1), 96 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    N. A. Kirichenko, I. A. Sukhov, G. A. Shafeev, and M. E. Shcherbina, “Evolution of the Distribution Function of Au Nanoparticles in a Liquid under the Action of Laser Radiation,” Quantum Electron. 42(2), 175 (2012) [DOI: 10. 1070/QE2012v042n02ABEH014779].ADSCrossRefGoogle Scholar
  32. 32.
    A. A. Serkov, P. G. Kuzmin, I. I. Rakov, and G. A. Shafeev, “Influence of Laser-Induced Breakdown on the Fragmentation of Gold Nanoparticles in Water,” Quantum Electron. 46(8), 713 (2016) [DOI: 10. 1070/QEL16094].ADSCrossRefGoogle Scholar
  33. 33.
    K. Tanabe, “Field Enhancement around Metal Nanoparticles and Nanoshells: A Systematic Investigation,” J. Phys. Chem. C. 112(40), 15721 (2008) [DOI: 10. 1021/jp8060009].CrossRefGoogle Scholar
  34. 34.
    D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum Plasmonics: Nonlinear Effects in the Field Enhancement of a Plasmonic Nanoparticle Dimer,” Nano Lett. 12(3), 1333 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    J. M. McMahon, A. -I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold Nanoparticle Dimer Plasmonics: Finite Element Method Calculations of the Electromagnetic Enhancement to Surface-Enhanced Raman Spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819 (2009).CrossRefGoogle Scholar
  36. 36.
    F. Schertz, M. Schmelzeisen, M. Kreiter, H. -J. Elmers, and G. Scho¨ nhense, “Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons,” Phys. Rev. Lett. 108(23), 237602 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    J. F. Ready, Effects of High Power Laser Radiation (Academic, Orlando, 1971), p. 261.Google Scholar
  38. 38.
    F. Williams, S. P. Varma, and S. Hillenius, “Liquid Water As a Lone-Pair Amorphous Semiconductor,” J. Chem. Phys. 64, 1549 (1976).ADSCrossRefGoogle Scholar
  39. 39.
    A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic Processes in Dielectrics under Irradiation by Subpicosecond Laser Pulses,” Phys. Rev. B. 61(17), 11437 (2000) [DOI: 10. 1103/Phys-RevB. 61. 11437].ADSCrossRefGoogle Scholar
  40. 40.
    F. Aitken, F. M. J. Mccluskey, and A. Denat, “An Energy Model for Artificially Generated Bubbles in Liquids,” J. Fluid Mech. 327, 373 (1996).ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    A. Prosperetti, “The Thermal Behaviour of Oscillating Gas Bubbles,” J. Fluid Mech. 222, 587 (1991).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Big Soviet Encyclopedia, 3rd Ed. (Macmillian Inc., N. Y., 1980).Vol. 25. P. 593.Google Scholar
  43. 43.
    CRC Handbook “Thermal Conductivity of Saturated H2O and D2O”, p. 6-4 (www.>en/List−of−thermal−conductivities).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University), Institutskiy per. 9Moscow oblastRussia

Personalised recommendations