Time dependence of the luminescence from a polymer membrane swollen in water: Concentration and isotopic effects

An Erratum to this article was published on 01 January 2018

This article has been updated

Abstract

The effect of UV irradiation of the surface of a Nafion polymer electrolyte membrane swollen in water in the pump grazing incidence geometry has been experimentally investigated. The photoluminescence from the Nafion surface has been measured in the spectral range characteristic of this polymer. The photoluminescence signal from a polymer with a variable isotopic composition is found to be sensitive to swelling in water. The spectral absorption lines of dry and water-swollen Nafion samples are characterized. It is shown that the luminescence centers in the polymer are sulfonic acid groups located on the ends of perfluorovinyl ether groups, which form the teflon base. Measurements of the temporal dynamics of the luminescence of these groups have revealed an informationally important and significant dependence of the luminescence parameters on the degree of Nafion swelling. A pronounced and nontrivial dependence of these parameters on the content of heavy isotope D2O in water is also found.

This is a preview of subscription content, access via your institution.

Change history

  • 21 March 2018

    The authors apologizes for this error in the paper ?Time Dependence of the Luminescence from a Polymer Membrane Swollen in Water: Concentration and Isotopic Effects? by N.F. Bunkin, G.A. Lyakhov, V.A. Kozlov, 74 A.V. Shkirin, I.I. Molchanov, M.T.Vu, I.S. Bereza, N.G. Bolikov, V.L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I.L. Fufurin, V.S. Gorelik, E.V. Uspenskaya, H.S. Nguyen, and S.V. Gudkov.

  • 21 March 2018

    The authors apologizes for this error in the paper ?Time Dependence of the Luminescence from a Polymer Membrane Swollen in Water: Concentration and Isotopic Effects? by N.F. Bunkin, G.A. Lyakhov, V.A. Kozlov, 74 A.V. Shkirin, I.I. Molchanov, M.T.Vu, I.S. Bereza, N.G. Bolikov, V.L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I.L. Fufurin, V.S. Gorelik, E.V. Uspenskaya, H.S. Nguyen, and S.V. Gudkov.

  • 21 March 2018

    The authors apologizes for this error in the paper ?Time Dependence of the Luminescence from a Polymer Membrane Swollen in Water: Concentration and Isotopic Effects? by N.F. Bunkin, G.A. Lyakhov, V.A. Kozlov, 74 A.V. Shkirin, I.I. Molchanov, M.T.Vu, I.S. Bereza, N.G. Bolikov, V.L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I.L. Fufurin, V.S. Gorelik, E.V. Uspenskaya, H.S. Nguyen, and S.V. Gudkov.

  • 21 March 2018

    The authors apologizes for this error in the paper ?Time Dependence of the Luminescence from a Polymer Membrane Swollen in Water: Concentration and Isotopic Effects? by N.F. Bunkin, G.A. Lyakhov, V.A. Kozlov, 74 A.V. Shkirin, I.I. Molchanov, M.T.Vu, I.S. Bereza, N.G. Bolikov, V.L. Fouilhe, Igor S. Golyak, Ilya S. Golyak, I.L. Fufurin, V.S. Gorelik, E.V. Uspenskaya, H.S. Nguyen, and S.V. Gudkov.

References

  1. 1.

    K. A. Mauritz and R. B. Moore, “State of Understanding of Nafion,” Chem. Rev. 104, 4535 (2004).

    Article  Google Scholar 

  2. 2.

    S. Srinivasan, “Fuel Cells for Extraterrestrial and Terrestrial Applications,” J. Electrochem. Soc. 136, 41C (1989).

    ADS  Article  Google Scholar 

  3. 3.

    K. D. Kreuer, “On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,” J. Membrane Sci. 185, 29 (2001).

    Article  Google Scholar 

  4. 4.

    C. Heitner-Wirguin, “Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications,” J. Membrane Sci. 120, 1 (1996).

    Article  Google Scholar 

  5. 5.

    T. D. Gierke, G. E. Munn, and F. C. Wilson, “TheMorphology in Nafion Perfluorinated Membrane Products, As Determined by Wide-and Small-Angle XRay Studies,” J. Polym. Sci., Polym. Phys. Ed. 19, 1687 (1981).

    ADS  Article  Google Scholar 

  6. 6.

    G. Gebel, P. Aldebert, and M. Pineri, “Swelling Study of Perfluorosulphonated Ionomer Membranes,” Polymer. 34, 333 (1993).

    Article  Google Scholar 

  7. 7.

    M. Fujimura, T. Hashimoto, and H. Kawai,“Small-Angle X-Ray Scattering Study of Perfluorinated Ionomer Membranes. 2. Models for Ionic Scattering Maximum,” Macromolecules. 15(1), 136 (1982) [DOI: 10. 1021/ma00229a028].

    ADS  Article  Google Scholar 

  8. 8.

    B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, and M. Thomas, “Distribution of the“Micelles” in Hydrated Perfluorinated Ionomer Membranes from SANS Experiments,” J. Phys. France. 51(12), 1341 (1990).

    Article  Google Scholar 

  9. 9.

    G. Gebel and J. Lambard, “Small-Angle Scattering Study of Water-Swollen Per-Fluorinated Ionomer Membranes,” Macromolecules. 30, 7914 (1997).

    ADS  Article  Google Scholar 

  10. 10.

    R. Wodzki, A. Narebska, and W. K. Nioch. “Percolation Conductivity in Nafion Membranes,” J. Appl. Polym. Sci. 30, 769 (1985).

    Article  Google Scholar 

  11. 11.

    G. Gebel, “Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution,” Polymer. 41, 5829 (2000).

    Article  Google Scholar 

  12. 12.

    M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-Induced Micelle Orientation in Nafion Films,” Macromolecules. 44(8), 2893 (2011) [DOI: 10. 1021/ma102361f].

    ADS  Article  Google Scholar 

  13. 13.

    J. M. Zheng and G. H. Pollack, “Long-Range Forces Extending from Polymer-Gel Surfaces,” Phys. Rev. E. 68, 031408 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    G. H. Pollack, The Fourth Phase of Water (Ebner and Sons Publ., Seattle, 2013).

    Google Scholar 

  15. 15.

    J. Yip, J. Duhamel, X. P. Qiu, and F. M. Winnik, “Fluorescence Studies of a Series of Monodisperse Telechelic Alpha, Omega-Dipyrenyl Poly(N-Isopropylacrylamide) s in Ethanol and in Water,” Can. J. Chem. 89, 163 (2011).

    Article  Google Scholar 

  16. 16.

    S. Holappa, L. Kantonen, T. Anderson, F. M. Winnik, and H. Tenhu, “Overcharging of Polyelectrolyte Complexes by the Guest Polyelectrolyte Studied by Fluorescence Spectroscopy,” Langmuir. 21, 11431 (2005).

    Article  Google Scholar 

  17. 17.

    S. Holappa, L. Kantonen, F. M. Winnik, and H. Tenhu, “Self-Complexation of Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) Studied by Fluorescence Spectroscopy,” Macromolecules. 37, 7008 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    K. Miyazawa and F. M. Winnik, “Isothermal Titration Calorimetry and Fluorescence Spectroscopy Studies of the Interactions between Surfactants and a Phosphorylcholine Based Polybetaine,” Prog. Coll. Polym. Sci. 122, 149 (2003).

    Article  Google Scholar 

  19. 19.

    M. Mizusaki, Y. Morishima, and F. M. Winnik, “An Assessment by Fluorescence Spectroscopy of the Stability of Polyanion/Positively Charged Liposome Systems in the Presence of Polycations,” Polymer. 42, 5615 (2001).

    Article  Google Scholar 

  20. 20.

    C. Poncet-Legrand and F. M. Winnik, “Solution Properties of Hydrophobically-Modified Copolymers of N-Isopropylacrylamide and N-Valine Arylamide: A Study by Fluorescence Spectroscopy and Microcalorimetry,” Polymer J. 33, 277 (2001).

    Article  Google Scholar 

  21. 21.

    S. V. Gudkov, M. E. Astashev, V. I. Bruskov, V. A. Kozlov, S. D. Zakharov, and N. F. Bunkin, “Self-Oscillating Water Chemiluminescence Modes and Reactive Oxygen Species Generation Induced by Laser Irradiation; Effect of the Exclusion Zone Created by Nafion,” Entropy. 16, 6166 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, “Colloidal Crystal Formation at the“Nafion−Water” Interface,” J. Phys. Chem. B. 118, 3372 (2014).

    Article  Google Scholar 

  23. 23.

    N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, “Phase States of Water near the Surface of a Polymer Membrane. Phase Microscopy and Luminescence Spectroscopy Experiments,” JETP. 119, 924 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    J. C. Pope, H. Sue, T. Bremner, and J. Blümel, “High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid-State NMR Study,” Polymer. 55, 4577 (2014).

    Article  Google Scholar 

  25. 25.

    L. V. Vinogradova, G. Toeroek, and V. T. Lebedev, “Amphiphilic Star-Shaped Polymer with Fullerene (C-60) Branching Center and Its Micelle-Forming Properties in D2O Solutions,” Russ. J. Appl. Chem. 85, 1594 (2012).

    Article  Google Scholar 

  26. 26.

    L. Hanyková, J. Labuta, and J. Spěváček, “NMR Study of Temperature-Induced Phase Separation and Polymer-Solvent Interactions in Poly(Vinyl Methyl Ether)/D2O/Ethanol Solutions,” Polymer. 47, 6107 (2006).

    Article  Google Scholar 

  27. 27.

    I. Lakatos and J. Lakatos-Szabo, “Diffusion of H+, H2O and D2O in Polymer/Silicate Gels,” Col. Surf. A. 246(1−3), 9 (2004).

    Article  Google Scholar 

  28. 28.

    P. Kujawa and F. M. Winnik, “Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly-(n-Isopropylacrylamide) in Water and D2O,” Macromolecules. 34, 4130 (2001).

    ADS  Article  Google Scholar 

  29. 29.

    J. F. Thomson, Biological Effects of Deuterium (Pergamon, N. Y., 1963).

    Google Scholar 

  30. 30.

    T. Kihara and J. A. McCray, “Water and Cytochrome Oxidation-Reduction Reactions,” Biochem. Biophys. Acta. 292(2), 297 (1973).

    Google Scholar 

  31. 31.

    S. Lewin, B. A. Williams, and B. J. Potter, “Some Aspects of Phenylalanine Incorporation in Deuterium Oxide (D2O) Substitution for Water (H2O) in Polyuridylic Acid-Directed Ribosomal Protein Biosynthesis,” Biochem. J. 117(2), 20P (1970).

    Article  Google Scholar 

  32. 32.

    P. R. Gross and C. V. Harding, “Blockade of Deoxyribonucleic Acid Synthesis by Deuterium Oxide,” Science. 133(3459), 1131 (1961).

    ADS  Article  Google Scholar 

  33. 33.

    T. Strekalova, M. Evans, A. Chernopiatko, Y. Couch, J. Costa-Nunes, R. Cespuglio, L. Chesson, J. Vignisse, H. W. Steinbusch, D. C. Anthony, I. Pomytkin, and K. P. Lesch, “Deuterium Content of Water Increases Depression Susceptibility: The Potential Role of a Serotonin-Related Mechanism,” Behav. Brain Res. 277, 237 (2015).

    Article  Google Scholar 

  34. 34.

    V. Vasilescu and D. Muargineanu, “The Role of Water in Biological Membrane Phenomena As Revealed by Deuterium Isotope Effects,” Rev. Roum. Physiol. 11(2), 167 (1974).

    Google Scholar 

  35. 35.

    V. Vasilescu, E. Katona, A. Popescu, C. Zaciu, and C. Ganea, “Some Problems Concerning the Role of Water and Protons in the Function of Biological Membranes,” in Membrane Processes. Molecular Biology and Medical Applications, Ed. by G. Benga, H. Baum, and F. A. Kummerow (Springer, N. Y., 1984).

    Google Scholar 

  36. 36.

    C. L. Schauf and J. O. Bullock, “Modifications of Sodium Channel Gating in Myxicola Giant Axons by Deuterium Oxide, Temperature, and Internal Cations,” Biophys. J. 27(2), 193 (1979).

    Article  Google Scholar 

  37. 37.

    A. V. Chernikov, S. V. Gudkov, I. N. Shtarkman, and V. I. Bruskov, “Oxygen Effect in Heat-Induced DNA Damage,” Biophysics. 52(2), 185 (2007) [DOI: 10. 1134/S0006350907020078].

    Article  Google Scholar 

  38. 38.

    S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky, and S. D. Zakharov, “Oxygen-Dependent Auto-Oscillations of Water Luminescence Triggered by the 1264 nm Radiation,” J. Phys. Chem. B. 115(23), 7693 (2011) [DOI: 10. 1021/jp2023154].

    Article  Google Scholar 

  39. 39.

    www1. lsbu. ac. uk/water/water−vibrational−spectrum. html

  40. 40.

    E. I. Den’ko, “Effect of Heavy Water (D2O) on Animal and Plant Cells and on Microorganisms,” Usp. Sovrem. Biol. 70(1), 41 (1970) [in Russian].

    Google Scholar 

  41. 41.

    D. J. Kushner, A. Baker, and T. G. Dunstall, “Pharmacological Uses and Perspectives of Heavy Water and Deuterated Compounds,” Can. J. Physiol. Pharmacol. 77(2), 79 (1999).

    Article  Google Scholar 

  42. 42.

    A. B. Lisicin, A. S. Didikin, L. V. Fedulova, I. M. Chernukha, M. G. Baryshev, E. E. Tekutskaya, S. S. Dzhimak, A. A. Basov, E. V. Barysheva, I. M. Bikov, and A. A. Timakov, “Influence of Deuterium Depleted Water on the Organism of Laboratory Animals in Various Functional Conditions of Nonspecific Protective Systems,” Biophysics. 59(4), 620 (2014).

    Article  Google Scholar 

  43. 43.

    R. Rehakova, J. Klimentova, M. Cebova, A. Barta, Z. Matuskova, P. Labas, and O. Pechanova, “Effect of Deuterium-Depleted Water on Selected Cardiometabolic Parameters in Fructose-Treated Rats,” Physiol. Res. 65, S401 (2016).

    Google Scholar 

  44. 44.

    H. Wang, B. Zhu, Z. He, H. Fu, Z. Dai, G. Huang, B. Li, D. Qin, X. Zhang, L. Tian, W. Fang, and H. Yang, “Deuterium-Depleted Water (DDW) Inhibits the Proliferation and Migration of Nasopharyngeal Carcinoma Cells in Vitro,” Biomed. Pharmacother. 67(6), 489 (2013).

    Article  Google Scholar 

  45. 45.

    Z. Gyöngyi, F. Budán, I. Szabó, I. Ember, I. Kiss, K. Krempels, I. Somlyai, and G. Somlyai,“Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl-2, and Myc Genes in Mouse Lung,” Nutr. Cancer. 65(2), 240 (2013).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. F. Bunkin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Lyakhov, G.A., Kozlov, V.A. et al. Time dependence of the luminescence from a polymer membrane swollen in water: Concentration and isotopic effects. Phys. Wave Phen. 25, 259–271 (2017). https://doi.org/10.3103/S1541308X17040045

Download citation