Advertisement

Physics of Wave Phenomena

, Volume 25, Issue 4, pp 259–271 | Cite as

Time dependence of the luminescence from a polymer membrane swollen in water: Concentration and isotopic effects

  • N. F. Bunkin
  • G. A. Lyakhov
  • V. A. Kozlov
  • A. V. Shkirin
  • I. I. Molchanov
  • M. T. Vu
  • I. S. Bereza
  • N. G. Bolikov
  • V. L. Fouilhe
  • Igor S. Golyak
  • Ilya S. Golyak
  • I. L. Fufurin
  • V. S. Gorelik
  • E. V. Uspenskaya
  • H. S. Nguyen
  • S. V. Gudkov
Optical Spectroscopy of Inhomogeneous Media

Abstract

The effect of UV irradiation of the surface of a Nafion polymer electrolyte membrane swollen in water in the pump grazing incidence geometry has been experimentally investigated. The photoluminescence from the Nafion surface has been measured in the spectral range characteristic of this polymer. The photoluminescence signal from a polymer with a variable isotopic composition is found to be sensitive to swelling in water. The spectral absorption lines of dry and water-swollen Nafion samples are characterized. It is shown that the luminescence centers in the polymer are sulfonic acid groups located on the ends of perfluorovinyl ether groups, which form the teflon base. Measurements of the temporal dynamics of the luminescence of these groups have revealed an informationally important and significant dependence of the luminescence parameters on the degree of Nafion swelling. A pronounced and nontrivial dependence of these parameters on the content of heavy isotope D2O in water is also found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Mauritz and R. B. Moore, “State of Understanding of Nafion,” Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
  2. 2.
    S. Srinivasan, “Fuel Cells for Extraterrestrial and Terrestrial Applications,” J. Electrochem. Soc. 136, 41C (1989).ADSCrossRefGoogle Scholar
  3. 3.
    K. D. Kreuer, “On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells,” J. Membrane Sci. 185, 29 (2001).CrossRefGoogle Scholar
  4. 4.
    C. Heitner-Wirguin, “Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications,” J. Membrane Sci. 120, 1 (1996).CrossRefGoogle Scholar
  5. 5.
    T. D. Gierke, G. E. Munn, and F. C. Wilson, “TheMorphology in Nafion Perfluorinated Membrane Products, As Determined by Wide-and Small-Angle XRay Studies,” J. Polym. Sci., Polym. Phys. Ed. 19, 1687 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    G. Gebel, P. Aldebert, and M. Pineri, “Swelling Study of Perfluorosulphonated Ionomer Membranes,” Polymer. 34, 333 (1993).CrossRefGoogle Scholar
  7. 7.
    M. Fujimura, T. Hashimoto, and H. Kawai,“Small-Angle X-Ray Scattering Study of Perfluorinated Ionomer Membranes. 2. Models for Ionic Scattering Maximum,” Macromolecules. 15(1), 136 (1982) [DOI: 10. 1021/ma00229a028].ADSCrossRefGoogle Scholar
  8. 8.
    B. Dreyfus, G. Gebel, P. Aldebert, M. Pineri, M. Escoubes, and M. Thomas, “Distribution of the“Micelles” in Hydrated Perfluorinated Ionomer Membranes from SANS Experiments,” J. Phys. France. 51(12), 1341 (1990).CrossRefGoogle Scholar
  9. 9.
    G. Gebel and J. Lambard, “Small-Angle Scattering Study of Water-Swollen Per-Fluorinated Ionomer Membranes,” Macromolecules. 30, 7914 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    R. Wodzki, A. Narebska, and W. K. Nioch. “Percolation Conductivity in Nafion Membranes,” J. Appl. Polym. Sci. 30, 769 (1985).CrossRefGoogle Scholar
  11. 11.
    G. Gebel, “Structural Evolution of Water Swollen Perfluorosulfonated Ionomers from Dry Membrane to Solution,” Polymer. 41, 5829 (2000).CrossRefGoogle Scholar
  12. 12.
    M. Bass, A. Berman, A. Singh, O. Konovalov, and V. Freger, “Surface-Induced Micelle Orientation in Nafion Films,” Macromolecules. 44(8), 2893 (2011) [DOI: 10. 1021/ma102361f].ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Zheng and G. H. Pollack, “Long-Range Forces Extending from Polymer-Gel Surfaces,” Phys. Rev. E. 68, 031408 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    G. H. Pollack, The Fourth Phase of Water (Ebner and Sons Publ., Seattle, 2013).Google Scholar
  15. 15.
    J. Yip, J. Duhamel, X. P. Qiu, and F. M. Winnik, “Fluorescence Studies of a Series of Monodisperse Telechelic Alpha, Omega-Dipyrenyl Poly(N-Isopropylacrylamide) s in Ethanol and in Water,” Can. J. Chem. 89, 163 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Holappa, L. Kantonen, T. Anderson, F. M. Winnik, and H. Tenhu, “Overcharging of Polyelectrolyte Complexes by the Guest Polyelectrolyte Studied by Fluorescence Spectroscopy,” Langmuir. 21, 11431 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Holappa, L. Kantonen, F. M. Winnik, and H. Tenhu, “Self-Complexation of Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) Studied by Fluorescence Spectroscopy,” Macromolecules. 37, 7008 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    K. Miyazawa and F. M. Winnik, “Isothermal Titration Calorimetry and Fluorescence Spectroscopy Studies of the Interactions between Surfactants and a Phosphorylcholine Based Polybetaine,” Prog. Coll. Polym. Sci. 122, 149 (2003).CrossRefGoogle Scholar
  19. 19.
    M. Mizusaki, Y. Morishima, and F. M. Winnik, “An Assessment by Fluorescence Spectroscopy of the Stability of Polyanion/Positively Charged Liposome Systems in the Presence of Polycations,” Polymer. 42, 5615 (2001).CrossRefGoogle Scholar
  20. 20.
    C. Poncet-Legrand and F. M. Winnik, “Solution Properties of Hydrophobically-Modified Copolymers of N-Isopropylacrylamide and N-Valine Arylamide: A Study by Fluorescence Spectroscopy and Microcalorimetry,” Polymer J. 33, 277 (2001).CrossRefGoogle Scholar
  21. 21.
    S. V. Gudkov, M. E. Astashev, V. I. Bruskov, V. A. Kozlov, S. D. Zakharov, and N. F. Bunkin, “Self-Oscillating Water Chemiluminescence Modes and Reactive Oxygen Species Generation Induced by Laser Irradiation; Effect of the Exclusion Zone Created by Nafion,” Entropy. 16, 6166 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, “Colloidal Crystal Formation at the“Nafion−Water” Interface,” J. Phys. Chem. B. 118, 3372 (2014).CrossRefGoogle Scholar
  23. 23.
    N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin, and N. V. Suyazov, “Phase States of Water near the Surface of a Polymer Membrane. Phase Microscopy and Luminescence Spectroscopy Experiments,” JETP. 119, 924 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    J. C. Pope, H. Sue, T. Bremner, and J. Blümel, “High-Temperature Steam-Treatment of PBI, PEEK, and PEKK Polymers with H2O and D2O: A Solid-State NMR Study,” Polymer. 55, 4577 (2014).CrossRefGoogle Scholar
  25. 25.
    L. V. Vinogradova, G. Toeroek, and V. T. Lebedev, “Amphiphilic Star-Shaped Polymer with Fullerene (C-60) Branching Center and Its Micelle-Forming Properties in D2O Solutions,” Russ. J. Appl. Chem. 85, 1594 (2012).CrossRefGoogle Scholar
  26. 26.
    L. Hanyková, J. Labuta, and J. Spěváček, “NMR Study of Temperature-Induced Phase Separation and Polymer-Solvent Interactions in Poly(Vinyl Methyl Ether)/D2O/Ethanol Solutions,” Polymer. 47, 6107 (2006).CrossRefGoogle Scholar
  27. 27.
    I. Lakatos and J. Lakatos-Szabo, “Diffusion of H+, H2O and D2O in Polymer/Silicate Gels,” Col. Surf. A. 246(1−3), 9 (2004).CrossRefGoogle Scholar
  28. 28.
    P. Kujawa and F. M. Winnik, “Volumetric Studies of Aqueous Polymer Solutions Using Pressure Perturbation Calorimetry: A New Look at the Temperature-Induced Phase Transition of Poly-(n-Isopropylacrylamide) in Water and D2O,” Macromolecules. 34, 4130 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    J. F. Thomson, Biological Effects of Deuterium (Pergamon, N. Y., 1963).Google Scholar
  30. 30.
    T. Kihara and J. A. McCray, “Water and Cytochrome Oxidation-Reduction Reactions,” Biochem. Biophys. Acta. 292(2), 297 (1973).Google Scholar
  31. 31.
    S. Lewin, B. A. Williams, and B. J. Potter, “Some Aspects of Phenylalanine Incorporation in Deuterium Oxide (D2O) Substitution for Water (H2O) in Polyuridylic Acid-Directed Ribosomal Protein Biosynthesis,” Biochem. J. 117(2), 20P (1970).CrossRefGoogle Scholar
  32. 32.
    P. R. Gross and C. V. Harding, “Blockade of Deoxyribonucleic Acid Synthesis by Deuterium Oxide,” Science. 133(3459), 1131 (1961).ADSCrossRefGoogle Scholar
  33. 33.
    T. Strekalova, M. Evans, A. Chernopiatko, Y. Couch, J. Costa-Nunes, R. Cespuglio, L. Chesson, J. Vignisse, H. W. Steinbusch, D. C. Anthony, I. Pomytkin, and K. P. Lesch, “Deuterium Content of Water Increases Depression Susceptibility: The Potential Role of a Serotonin-Related Mechanism,” Behav. Brain Res. 277, 237 (2015).CrossRefGoogle Scholar
  34. 34.
    V. Vasilescu and D. Muargineanu, “The Role of Water in Biological Membrane Phenomena As Revealed by Deuterium Isotope Effects,” Rev. Roum. Physiol. 11(2), 167 (1974).Google Scholar
  35. 35.
    V. Vasilescu, E. Katona, A. Popescu, C. Zaciu, and C. Ganea, “Some Problems Concerning the Role of Water and Protons in the Function of Biological Membranes,” in Membrane Processes. Molecular Biology and Medical Applications, Ed. by G. Benga, H. Baum, and F. A. Kummerow (Springer, N. Y., 1984).Google Scholar
  36. 36.
    C. L. Schauf and J. O. Bullock, “Modifications of Sodium Channel Gating in Myxicola Giant Axons by Deuterium Oxide, Temperature, and Internal Cations,” Biophys. J. 27(2), 193 (1979).CrossRefGoogle Scholar
  37. 37.
    A. V. Chernikov, S. V. Gudkov, I. N. Shtarkman, and V. I. Bruskov, “Oxygen Effect in Heat-Induced DNA Damage,” Biophysics. 52(2), 185 (2007) [DOI: 10. 1134/S0006350907020078].CrossRefGoogle Scholar
  38. 38.
    S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky, and S. D. Zakharov, “Oxygen-Dependent Auto-Oscillations of Water Luminescence Triggered by the 1264 nm Radiation,” J. Phys. Chem. B. 115(23), 7693 (2011) [DOI: 10. 1021/jp2023154].CrossRefGoogle Scholar
  39. 39.
    www1. lsbu. ac. uk/water/water−vibrational−spectrum. htmlGoogle Scholar
  40. 40.
    E. I. Den’ko, “Effect of Heavy Water (D2O) on Animal and Plant Cells and on Microorganisms,” Usp. Sovrem. Biol. 70(1), 41 (1970) [in Russian].Google Scholar
  41. 41.
    D. J. Kushner, A. Baker, and T. G. Dunstall, “Pharmacological Uses and Perspectives of Heavy Water and Deuterated Compounds,” Can. J. Physiol. Pharmacol. 77(2), 79 (1999).CrossRefGoogle Scholar
  42. 42.
    A. B. Lisicin, A. S. Didikin, L. V. Fedulova, I. M. Chernukha, M. G. Baryshev, E. E. Tekutskaya, S. S. Dzhimak, A. A. Basov, E. V. Barysheva, I. M. Bikov, and A. A. Timakov, “Influence of Deuterium Depleted Water on the Organism of Laboratory Animals in Various Functional Conditions of Nonspecific Protective Systems,” Biophysics. 59(4), 620 (2014).CrossRefGoogle Scholar
  43. 43.
    R. Rehakova, J. Klimentova, M. Cebova, A. Barta, Z. Matuskova, P. Labas, and O. Pechanova, “Effect of Deuterium-Depleted Water on Selected Cardiometabolic Parameters in Fructose-Treated Rats,” Physiol. Res. 65, S401 (2016).Google Scholar
  44. 44.
    H. Wang, B. Zhu, Z. He, H. Fu, Z. Dai, G. Huang, B. Li, D. Qin, X. Zhang, L. Tian, W. Fang, and H. Yang, “Deuterium-Depleted Water (DDW) Inhibits the Proliferation and Migration of Nasopharyngeal Carcinoma Cells in Vitro,” Biomed. Pharmacother. 67(6), 489 (2013).CrossRefGoogle Scholar
  45. 45.
    Z. Gyöngyi, F. Budán, I. Szabó, I. Ember, I. Kiss, K. Krempels, I. Somlyai, and G. Somlyai,“Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl-2, and Myc Genes in Mouse Lung,” Nutr. Cancer. 65(2), 240 (2013).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • N. F. Bunkin
    • 1
    • 2
  • G. A. Lyakhov
    • 2
  • V. A. Kozlov
    • 1
  • A. V. Shkirin
    • 2
    • 3
  • I. I. Molchanov
    • 1
  • M. T. Vu
    • 1
  • I. S. Bereza
    • 1
  • N. G. Bolikov
    • 1
  • V. L. Fouilhe
    • 4
  • Igor S. Golyak
    • 1
    • 5
  • Ilya S. Golyak
    • 1
    • 5
  • I. L. Fufurin
    • 1
    • 5
  • V. S. Gorelik
    • 1
    • 6
  • E. V. Uspenskaya
    • 6
  • H. S. Nguyen
    • 7
    • 8
  • S. V. Gudkov
    • 2
    • 9
  1. 1.Bauman State Technical UniversityMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Ecole Nationale Superieure des MinesCMP-EMSEGardanneFrance
  5. 5.Bauman MSTU Center of Applied PhysicsMoscowRussia
  6. 6.Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  7. 7.RUDN UniversityMoscowRussia
  8. 8.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiVietnam
  9. 9.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia

Personalised recommendations