Skip to main content
Log in

Lidar sensing of ship wakes

  • Remote Sensing of Natural Media
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Detection of ship wakes is utterly important for ship traffic monitoring, security of sea borders, etc. Among standard detection methods there are radar and acoustic sensing, photographing, hyperspectral measurements, and water sample analysis. However, these methods are hardly suitable for detecting wakes of light high-speed boats. An alternative is optical methods, in particular laser remote sensing. In this work, laboratory experiments on laser remote sensing of water perturbed by a propeller rotating at up to 20 000 rpm are described. A long (over 5 h) decrease in the integral of the band of OH stretching vibrations inH2Omolecules in the Raman scattering spectrum and a blueshift of theOHband center by 2.5 to 3 cm−1 are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Ermakov and I.A. Kapustin, “Experimental Study of Turbulent-Wake Expansion from a Surface Ship,” Izv. Atmos. Ocean. Phys. 46(4), 524 (2010).

    Article  Google Scholar 

  2. A. Soloviev, M. Gilman, K. Young, S. Brusch, and S. Lehner, “Sonar Measurements in Ship Wakes Simultaneous with TerraSAR-X Overpasses,” IEEE Trans. Geosci. Remote Sens. 48(2), 841 (2010).

    Article  ADS  Google Scholar 

  3. A.M. Reed and J.H. Milgram, “ShipWakes and Their Radar Images,” Ann. Rev. Fluid Mech. 34(1), 469 (2002).

    Article  ADS  MATH  Google Scholar 

  4. H. Greidanus, “Satellite Imaging for Maritime Surveillance of the European Seas,” in Remote Sensing of the European Seas (Springer, 2008), p.343.

    Chapter  Google Scholar 

  5. R. Wright, J. Deloatch, S. Osgood, and J. Yuan, “The Spectral Reflectance of ShipWakes between 400 and 900 nm,” in IEEE International Geoscience and Remote Sensing Symposium “Remote Sensing for a Dynamic Earth” (IGARSS) (22−27 July 2012, Munich, Germany), p. 4186.

    Google Scholar 

  6. X. Zhang, M. Lewis, P.W. Bissett, B. Johnson, and D. Kohler, “Optical Influence of Ship Wakes,” Appl. Opt. 43(15), 3122 (2004).

    Article  ADS  Google Scholar 

  7. G.I. Rudenko, RF Patent No. 2407037 (2010) [in Russian].

    Google Scholar 

  8. M.V. Trevorrow, S. Vagle, and D.M. Farmer, “Acoustical Measurements of Microbubbles within Ship Wakes,” J. Acoust. Soc. Am. 95(4), 1922 (1994).

    Article  ADS  Google Scholar 

  9. A. Sutin, A. Benilov, S.H. Roh, and Y. Nah, “Acoustic Measurements of Bubbles in the Wake of Ship Models,” in Proceedings of the 3rd International Conference on Underwater Acoustic Measurements: Technologies and Results (Napflion, Crete, 2009) p.767.

    Google Scholar 

  10. J.S. Carlton, Marine Propellers and Propulsion. 2nd ed. (Elsevier, Oxford, 2007).

    Google Scholar 

  11. K. Pardeep and R.P. Saini, “Study of Cavitation in Hydro Turbines—a Review,” Renew. Sustain. En. Rev. 14(1), 374 (2010).

    Article  Google Scholar 

  12. G. Kuiper, “Cavitation Research and Ship Propeller Design,” Appl. Sci. Res. 58(1-4), 33 (1997).

    Article  ADS  Google Scholar 

  13. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and Rebound of a Laser-Induced Cavitation Bubble,” Phys. Fluids. 13(10), 2805 (2001).

    Article  ADS  MATH  Google Scholar 

  14. C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, 2013).

    Book  MATH  Google Scholar 

  15. W. Li, K. Yang, M. Xia, J. Rao, and W. Jang, “Influence of Characteristics of Micro-Bubble Clouds on Backscatter Lidar Signal,” Opt. Exp. 17(20), 17772 (2009).

    Article  ADS  Google Scholar 

  16. H. Wang, Y. Wang, S. Chen, Y. Qi, and H. Liu, “Research on Polarization of Water and Bubble Scattering Echo,” Proc. SPIE. 8192, 81920M (2011).

    Google Scholar 

  17. L. Su, W. Zhao, X. Hu, D. Ren, and X. Liu, “Simple Lidar DetectingWake Profiles,” J. Opt. A: Pure Appl. Opt. 9(10), 842 (2007).

    Article  ADS  Google Scholar 

  18. D. Zhu, X. Zhang, J. Rao, S. Jin, and K. Liu, “Research on Ship Wake Detection Mechanism Based on Optical Backscattering Effect,” Proc. SPIE. 7656, 765678 (2010).

    Article  Google Scholar 

  19. H. Wang, Y. Wang, and S. Chen, “Influence of Wake Bubbles on Optical Impulse Scattering Echo,” Opt. Laser Technol. 44(6), 1743 (2012).

    Article  ADS  Google Scholar 

  20. A.F. Bunkin, V.K. Klinkov, V.A. Lukyanchenko, and S.M. Pershin, “Ship Wake Detection by Raman Lidar,” Appl. Opt. 50, A86 (2011).

    Article  ADS  Google Scholar 

  21. A.F. Bunkin, V.K. Klinkov, V.N. Lednev, D.L. Lushnikov, A.V. Marchenko, E.G. Morozov, S.M. Pershin, and R.N. Yulmetov, “Remote Sensing of Seawater and Drifting Ice in Svalbard Fjords by Compact Raman Lidar,” Appl. Opt. 51(22), 5477 (2012).

    Article  ADS  Google Scholar 

  22. E.G. Walrafen, “Raman Spectral Studies of the Effects of Electrolytes on Water,” J. Chem. Phys. 36, 1035 (1962).

    Article  ADS  Google Scholar 

  23. T.T. Wall and D.F. Hornig, “Raman Intensities of HDO and Structure in LiquidWater,” J. Chem. Phys. 43(6), 2079 (1965).

    Article  ADS  Google Scholar 

  24. G.E. Walrafen, M.R. Fisher, M.S. Hokmabadi, and W.-H. Yang, “Temperature Dependence of the Lowand High-Frequency Raman Scattering from Liquid Water,” J. Chem. Phys. 85(12), 6970 (1986).

    Article  ADS  Google Scholar 

  25. S.M. Pershin and A.F. Bunkin, “A jump in the Position and Width of the Raman Band Envelope of OH Valence Vibrations upon Phase Transitions of the First and Second Kinds in Water,” Opt. Spectrosc. 85(2), 209 (1998).

    Google Scholar 

  26. V.N. Lednev, M. Ya. Grishin, S.M. Pershin, and A.F. Bunkin, “Quantifying Raman OH-Band Spectra for RemoteWater Temperature Measurements,” Opt. Lett. 41(20), 4625 (2016).

    Article  ADS  Google Scholar 

  27. A.F. Bunkin and S.M. Pershin, RF Patent No. 98103249 (1998) [in Russian].

    Google Scholar 

  28. A.F. Bunkin, G.A. Lyakhov, N.V. Suyazov, and S.M. Pershin, “Sequence of Water Thermodynamic Singularities in Raman Spectra,” J. Raman Spectrosc. 31(8-9), 857 (2000).

    Article  ADS  Google Scholar 

  29. S.M. Pershin and A.F. Bunkin, “Direct Observation of the Configurational Energy Evolution and Anomalies Near Some Temperature Points inWater,” Phys.Vibr. 7(4), 217 (1999).

    Google Scholar 

  30. C.A. Angell and F. Franks, Water: A Comprehensive Treatise. Vol. 7 (Plenum, N.Y., 1982).

    Google Scholar 

  31. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and Ion Hydration (Izd-vo AN SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  32. G.N. Zatsepina, Water Properties and Structure (MGU,Moscow, 1974) [in Russian].

    Google Scholar 

  33. S.M. Pershin, A.F. Bunkin, and V.A. Luk’yanchenko, “Evolution of the Spectral Component of Ice in the OH Band ofWater at Temperatures from 13 to 99°C,” Quantum Electron. 40(12), 1146 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Grishin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, M.Y., Lednev, V.N., Pershin, S.M. et al. Lidar sensing of ship wakes. Phys. Wave Phen. 25, 225–230 (2017). https://doi.org/10.3103/S1541308X17030104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17030104

Navigation