Physics of Wave Phenomena

, Volume 24, Issue 4, pp 295–300 | Cite as

Effect of a constant electric field on mutual rectification in a graphene superlattice

  • V. L. AbdrakhmanovEmail author
  • S. V. Kryuchkov
  • D. V. Zav’yalov
Low-Dimensional Superlattices


The effect of a transverse dc electric field on two-wave mutual rectification in a graphene superlattice (GSL) is investigated. Two field orientations are considered: (i) the polarization plane is parallel to the GSL axis and (ii) the polarization plane is perpendicular to the GSL axis. In both cases, the constant field is perpendicular to the polarization plane. The current density is calculated within a one-miniband model using the Boltzmann equation in the approximation of constant relaxation time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Giant Photocurrents in a Dirac Fermion System at Cyclotron Resonance,” Phys. Rev. B. 87, 235439 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    T. Hyart, J. Mattas, K. N. Alekseev, “Model of the Influence of an External Magnetic Field on the Gain of Terahertz Radiation from Semiconductor Superlattices,” Phys. Rev. Lett. 103, 117401 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    S. V. Kryuchkov and E. I. Kukhar, “Possibility of the Effect of Absolute Negative Conductivity in Quantum Superlattice Exposed to the High-Frequency Electromagnetic Radiation,” Superlattices and Microstructures. 83, 322 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    V. I. Konchenkov, S. V. Kryuchkov, T. A. Nosaeva, and D. V. Zav’yalov, “Mutual Rectification of Alternating Currents in Graphene in the Field of Two Electromagnetic Waves,” Phys. Wave Phenom. 21 (1), 56 (2013) [DOI: 10.3103/S1541308X13010111].ADSCrossRefGoogle Scholar
  5. 5.
    R. B. Liu and B. F. Zhu, “Nonlinear Optics of Semiconductors under an Intense Terahertz Field,” Phys. Rev. B. 68, 195 (2003).Google Scholar
  6. 6.
    C. Attaccalite and M. Grüning, “Nonlinear Optics from an Ab Initio Approach by Means of the Dynamical Berry Phase: Application to Second-and Third-Harmonic Generation in Semiconductors,” Phys. Rev. B. 88, 235113 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    M. Silveirinha and N. Engheta, “Giant Nonlinearity in Zero-Gap Semiconductor Superlattices,” Phys. Rev. B. 89, 085205 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D. Ganichev, “Erratum: Ratchet Effects Induced by Terahertz Radiation in Heterostructures with a Lateral Periodic Potential,” Phys. Rev. Lett. 103, 090603 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    P. Olbrich, J. Kamann, M. Konig, J. Munzert, L. Tutsch, J. Eroms, D. Weiss, Ming-Hao Liu, L. E. Golub, E. L. Ivchenko, V. V. Popov, D. V. Fateev, K. V. Mashinsky, F. Fromm, Th. Seyller, and S. D. Ganichev, “Terahertz Ratchet Effects in Graphene with a Lateral Superlattice,” Phys. Rev. B. 93, 075422 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Rozhansky, V. Yu. Kachorovskii, and M. S. Shur, “Helicity-Driven Ratchet Effect Enhanced by Plasmons,” Phys. Rev. Lett. 114, 246601 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Popov, “Terahertz Rectification by Periodic Two-Dimensional Electron Plasma,” Appl. Phys. Lett. 102, 253504 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    S. Mensah, G. M. Shmelev, and E. M. Epshtein, “Optical Mixing of Two Electromagnetic Waves in a Superlattice,” Izv. VUZov. Fiz. 31 (6), 112 (1988) [in Russian].Google Scholar
  13. 13.
    E. Hendry, P. J. Hale, J. Moger, and A. K. Savchenko, “Coherent NonlinearOptical Response of Graphene,” Phys. Rev. Lett. 105, 097401 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H. Y. Chiu, A. L. Smirl, and H. Zhao, “Third harmonic generation in graphene and few-layer graphite films,” Phys. Rev. B. 87, 121406 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Konchenkov, S. V. Kryuchkov, and D. V. Zav’yalov, “Influence of a Transverse Electric Field on the Alternating Currents Rectification Effect in Superstructures with Nonadditive Energy Spectrum,” J. Nano- and Electron. Phys. 5 (4), 04001 (2013).Google Scholar
  16. 16.
    S. Y. Hong, J. I. Dadap, N. Petrone, P. C. Yeh, J. Hone, and R. M. Osgood, “Optical Third-Harmonic Generation in Graphene,” Phys. Rev. X. 3, 021014 (2013).Google Scholar
  17. 17.
    T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative Oscillation and Four-Wave Mixing in Graphene Optoelectronics,” Nat. Phot. 6, 8 (2012).CrossRefGoogle Scholar
  18. 18.
    D. V. Zav’yalov, V. I. Konchenkov, and S. V. Kryuchkov, “Mutual Rectification of Alternating Currents Induced by ElectromagneticWaves in Graphene,” Phys. Solid State. 51, 2157 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    D. V. Zavialov, V. I. Konchenkov, and S. V. Kruchkov, “Transverse Current Rectification in a Graphene-Based Superlattice,” Semiconductors. 46, 1 (2012).CrossRefGoogle Scholar
  20. 20.
    M. M. Jadidi, R. J. Suess, X. Cai, A. B. Sushkov, M. Mittendorff, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Characterization of Graphene Photothermoelectric Detector via Two-Wave Mixing Technique,” in Conference on Lasers and Electro-Optics (CLEO) (San Jose, CA (USA), SM2G. 7, 2015).Google Scholar
  21. 21.
    S. V. Kryuchkov and E. I. Kukhar’, “Mutual Rectification of Cnoidal and Sinusoidal Electro-Magnetic Waves with Orthogonal Polarization Planes in a Graphene Based Superlattice,” Opt. Spectrosc. 112 (6), 914 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    P. V. Ratnikov, “Superlattice Based on Graphene on a Strip Substrate,” JETP Lett. 90 (6), 469 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science. 306, 666 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    D. V. Zavyalov, S. V. Kryuchkov, and T. A. Tyul’kina, “Effect of Rectification of Current Induced by an Electromagnetic Wave in Graphene: A Numerical Simulation,” Semiconductors. 44, 7 (2010).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. L. Abdrakhmanov
    • 1
    Email author
  • S. V. Kryuchkov
    • 2
  • D. V. Zav’yalov
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia
  2. 2.Volgograd State Socio-Pedagogical UniversityVolgogradRussia

Personalised recommendations