Skip to main content
Log in

Numerical modeling of wave processes in coupled magnonic crystals with periods shifted relative to each other

  • Waves in Photonic Crystals
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A calculation model has been developed to describe the propagation of magnetostatic waves in a periodic structure consisting of two one-dimensional magnonic crystals, the periods of which are shifted relative to each other in the wave propagation direction. It is shown that, depending on the shift between the magnonic crystals, up to three bandgaps can be formed in this structure in the first Bragg resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Gulyaev, S. A. Nikitov, L. V. Zhivotovskii, A. A. Klimov, Ph. Tailhades, L. Presmanes, C. Bonningue, C. S. Tsai, S. L. Vysotskii, and Yu. A. Filimonov, “Ferromagnetic Films with Magnon Bandgap Periodic Structures: Magnon Crystals,” JETP Lett. 77(10), 567 (2003).

    Article  ADS  Google Scholar 

  2. S. A. Nikitov and C. S. Tsai, “Spin Waves in Periodic Magnetic Structures-Magnonic Crystals,” J. Magn. Magn. Mater. 236(3), 320 (2001).

    Article  ADS  Google Scholar 

  3. A. V. Chumak, A. A. Serga, B. Hillebrands, and M. P. Kostylev, “Scattering of Backward Spin Waves in a One-Dimensional Magnonic Crystal,” Appl. Phys. Lett. 93, 022508 (2008).

    Article  ADS  Google Scholar 

  4. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, “Magnonics,” J. Phys. D. 43, 264001 (2010).

    Article  ADS  Google Scholar 

  5. A. A. Serga, A. V. Chumak, and B. Hillebrands, “YIG Magnonics,” J. Phys. D: Appl. Phys. 43, 264002 (2010).

    Article  ADS  Google Scholar 

  6. Yu. S. Kivshar’ and G. P. Agraval, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).

    Google Scholar 

  7. Kim Sang-Koog, Lee Ki-Suk, and Han Dong-Soo, “A Gigahertz-Range Spin-Wave Filter Composed of Width-Modulated Nanostripmagnonic-Crystal Waveguides,” Appl. Phys. Lett. 95, 082507 (2009).

    Article  ADS  Google Scholar 

  8. A. B. Ustinov, A. V. Drozdovskii, and B. A. Kalinikos, “Multifunctional Nonlinear Magnonic Devices for Microwave Signal Processing,” Appl. Phys. Lett. 96, 142513 (2010).

    Article  ADS  Google Scholar 

  9. S. V. Grishin, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, and S. A. Nikitov, “Selfgeneration of Dissipative Solitons in Magnonic Quasicrystal Active Ring Resonator,” J. Appl. Phys. 115, 053908 (2014).

    Article  ADS  Google Scholar 

  10. A. V. Chumak, T. Neumann, A. A. Serga, B. Hillebrands, and M. P. Kostylev, “A Current-Controlled, DynamicMagnonic Crystal,” J. Phys. D: Appl. Phys. 42, 205005 (2009).

    Article  ADS  Google Scholar 

  11. A. Yu. Annenkov, S. V. Gerus, and S. I. Kovalev, “Bulk and Surface-Bulk Magnetostatic Waves in Waveguides Produced by a Step Bias Field,” Tech. Phys. 49(2), 238 (2004).

    Article  Google Scholar 

  12. E. N. Beginin, Yu. A. Filimonov, E. S. Pavlov, S. L. Vysotskii, and S. A. Nikitov, “Bragg Resonances of Magnetostatic Surface Spin Waves in a Layered Structure: Magnonic Crystal-Dielectric-Metal,” Appl. Phys. Lett. 100, 252412 (2012).

    Article  ADS  Google Scholar 

  13. M. A. Morozova and A. Yu. Sharaevskaya, “Dispersion Characteristics of Magnetostatic Waves in Coupled Magnonic Crystals,” in Heteromagnetic Microelectronics. Iss. 15: HeteromagneticMicro- and Nanoelectronics. Methodical Aspects of Physical Education, Ed. by A. V. Lyashenko (Izd-vo Saratov Univ., Saratov, 1993), p. 82 [in Russian].

    Google Scholar 

  14. M. A. Morozova, S. V. Grishin, A. V. Sadovnikov, Yu. P. Sharaevskii, S. A. Nikitov, “Magnonic Bandgap Control in CoupledMagnonic Crystals,” IEEE Trans. Magnetics. 50(11), 4007204 (2014).

    Article  Google Scholar 

  15. A. Yu. Sharaevskaya, “Features of Formation of Band Gaps in Coupled Structures Based on Magnonic Crystals,” Izv. VUZ. Appl. Nonlin. Dyn. 22(6), 59 (2014) [in Russian].

    Google Scholar 

  16. M. A. Morozova and O. V. Matveev, “Propagation of Nonlinear Pulses ofMagnetostaticWaves in Coupled Magnonic Crystals,” Phys. Wave Phenom. 23(2), 114 (2015) [DOI: 10.3103/S1541308X15020053].

    Article  ADS  Google Scholar 

  17. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Izd-vo Saratov Univ., Saratov, 1993) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Morozova.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, M.A., Sharaevskaya, A.Y., Matveev, O.V. et al. Numerical modeling of wave processes in coupled magnonic crystals with periods shifted relative to each other. Phys. Wave Phen. 24, 1–6 (2016). https://doi.org/10.3103/S1541308X16010015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X16010015

Keywords

Navigation