Laser diagnostics of the Bubston phase in the bulk of aqueous salt solutions


Stable gas nanobubbles in the bulk of NaCl aqueous solutions and clusters of these nanobubbles have been investigated at different ion concentrations by four independent laser techniques (phase microscopy, dynamic light scattering, optical breakdown, and measurement of angular dependences of the light scattering matrix). The results obtained by these radically different techniques are in good agreement. It is found that the nanobubble size is practically constant and amounts to approximately 100nm in the range of ion concentrations 10−6<C <1M. It is shown that a necessary condition for nanobubble nucleation is the saturation of solution with dissolved air. It is revealed that nanobubble clusters form a thermodynamically nonequilibrium phase with a lifetime of several months.

This is a preview of subscription content, access via your institution.


  1. 1.

    M.A. Hampton and A.V. Nguyen, “Nanobubbles and the Nanobubble Bridging Capillary Force,” Adv. Coll. Interface Sci. 333, 800 (2009).

    Article  Google Scholar 

  2. 2.

    V.S.J. Craig, “Very Small Bubbles at Surfaces—the Nanobubble Puzzle,” Soft Matter. 7, 40 (2011).

    Article  ADS  Google Scholar 

  3. 3.

    P. Attard, “The Stability of Nanobubbles,” Eur. Phys. J. Spec. Top. (2013) [DOI 10.1140/epjst/e2013- 01817-0].

    Google Scholar 

  4. 4.

    J.R.T. Seddon, D. Lohse, W.A. Ducker, and V.S.J. Craig, “A Deliberation on Nanobubbles at Surfaces and in Bulk,” Chem. Phys. Chem. 13, 2179 (2012).

    Google Scholar 

  5. 5.

    K. Kikuchi, Y. Tanaka, Y. Saihara, M. Maeda, M. Kawamura, and Z. Ogumi, “Concentration of Hydrogen Nanobubbles in Electrolyzed Water,” J. Coll. Interface Sci. 298, 914 (2006).

    Article  Google Scholar 

  6. 6.

    F.Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, and S. Oshita, “Evidence of the Existence and the Stability of Nano- Bubbles in Water,” Coll. Surf. A: Physicochem. Eng. Aspects. 361, 31 (2010).

    Article  Google Scholar 

  7. 7.

    F. Jin, J. Ye, L. Hong, H. Lam, and C. Wu, “Slow Relaxation Mode in Mixtures of Water and Organic Molecules: Supramolecular Structures or Nanobubbles?” J. Phys. Chem. B. 111, 2255 (2007).

    Article  Google Scholar 

  8. 8.

    F. Jin, X. Ye, and C. Wu, “Observation of Kinetic and Structural Scalings during Slow Coalescence of Nanobubbles in an Aqueous Solution,” J. Phys. Chem. B. 111(46), 13143 (2007).

    Article  Google Scholar 

  9. 9.

    F. Jin, J. Ye, L. Hong, H. Lam, and C. Wu, “Slow Relaxation Mode in Mixtures of Water and Organic Molecules: Supramolecular Structures or Nanobubbles?” J. Phys. Chem. B. Condens. Matter Mater. Surf. Interfaces Biophys. 111, 2255 (2007).

    Google Scholar 

  10. 10.

    F. Jin, X.J. Gong, J. Yea, and T. Ngai, “Direct Measurement of the Nanobubble-Induced Weak Depletion Attraction Between a Spherical Particle and a Flat Surface in an Aqueous Solution,” Soft Matter. 4, 968 (2008).

    Article  ADS  Google Scholar 

  11. 11.

    K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji, and T. Nakagawa, “Physicochemical Approach to Nanobubble Solutions,” Chem. Eng. Sci. 65, 1296 (2010).

    Article  Google Scholar 

  12. 12.

    P. Attard, “Nanobubbles and the Hydrophobic Attraction,” Adv. Coll. Interface Sci. 104, 75 (2003).

    Article  Google Scholar 

  13. 13.

    S. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, and D. Lohse, “Characterization of Nanobubbles on Hydrophobic Surfaces in Water,” Langmuir. 23, 7072 (2007).

    Article  Google Scholar 

  14. 14.

    X.H. Zhang, A. Khan, and W.A. Ducker, “A Nanoscale Gas State,” Phys. Rev. Lett. 98, 136101 (2007).

    Article  ADS  Google Scholar 

  15. 15.

    L.J. Zhang, Y. Zhang, X.H. Zhang, Z.X. Li, G.X. Shen, M. Ye, Ch.. Fan, H.P. Fang, and J. Hu, “Electrochemically Controlled Formation and Growth of Hydrogen Nanobubbles,” Langmuir. 22, 8109 (2006).

    Article  Google Scholar 

  16. 16.

    X.H. Zhang, A. Quinn, and W.A. Ducker, “Nanobubbles at the Interface BetweenWater and a Hydrophobic Solid,” Langmuir. 24, 4756 (2008).

    Article  Google Scholar 

  17. 17.

    J.W.G. Tyrrell and P. Attard, “Images of Nanobubbles on Hydrophobic Surfaces and Their Interactions,” Phys. Rev. Lett. 87, 176104 (2001).

    Article  ADS  Google Scholar 

  18. 18.

    B.M. Borkent, S.M. Dammer, H. Schönherr, G.J. Vancso, and D. Lohse, “Superstability of Surface Nanobubbles,” Phys. Rev. Lett. 98, 204502 (2007).

    Article  ADS  Google Scholar 

  19. 19.

    S. Ljunggren and J.C. Eriksson, “The Lifetime of a Colloid-Sized Gas Bubble in Water and the Cause of the Hydrophobic Attraction,” Coll. Surf. A. 130, 151 (1997).

    Article  Google Scholar 

  20. 20.

    J.H. Weijs and D. Lohse, “Why Surface Nanobubbles Live for Hours,” Phys. Rev. Lett. 110, 054501 (2013).

    Article  ADS  Google Scholar 

  21. 21.

    S. Wang, M. Liu, and Y. Dong, “Understanding the Stability of Surface Nanobubbles,” J. Phys.: Condens. Matter. 25, 184007 (2013).

    ADS  Google Scholar 

  22. 22.

    J.H. Weijs, J.R.T. Seddon, and D. Lohse, “Diffusive Shielding Stabilizes Bulk Nanobubble Clusters”, Chem. Phys. Chem. 13, 2197 (2012).

    Google Scholar 

  23. 23.

    P. Jungwirth and D.J. Tobias, “Specific Ion Effects at the Air/Water Interface,” Chem. Rev. 106, 1259 (2006).

    Article  Google Scholar 

  24. 24.

    P.B. Petersen and R.J. Saykally, “Confirmation of Enhanced Anion Concentration at the LiquidWater Surface,” Chem. Phys. Lett. 397, 51 (2004).

    Article  ADS  Google Scholar 

  25. 25.

    P.B. Petersen, J.C. Johnson, K.P. Knutsen, and R.J. Saykally, “Direct Experimental Validation of the Jones-Ray Effect,” Chem. Phys. Lett. 397, 46 (2004).

    Article  ADS  Google Scholar 

  26. 26.

    R. Weber, B. Winter, P.M. Schmidt, W. Widdra, I.V. Hertel, M. Dittmar, and M. Faubel, “Photoemission from Aqueous Alkali-Metal-Iodide Salt Solutions Using EUV Synchrotron Radiation,” J. Phys. Chem. B. 108, 4729 (2004).

    Article  Google Scholar 

  27. 27.

    B. Winter, R. Weber, P.M. Schmidt, I.V. Hertel, M. Faubel, M. Vrbka, and P. Yungwirth, “Molecular Structure of Surface-Active Salt Solutions: Photoelectron Spectroscopy and Molecular Dynamics Simulations of Aqueous Tetrabutyl- Ammonium Iodide,” J. Phys. Chem. B. 108, 14558 (2004).

    Article  Google Scholar 

  28. 28.

    S. Ghosal, A. Shbeeb, and J.C. Hemminger, “Surface Segregation of Bromine in Bromide Doped NaCl: Implications for the Seasonal Variations in Arctic Ozone,” Geophys. Res. Lett. 27, 1879 (2000).

    Article  ADS  Google Scholar 

  29. 29.

    B.J. Finlayson-Pitts and J.C. Hemminger, “The Physical Chemistry of Airborne Sea Salt Particles and Their Components,” J. Phys. Chem. A. 104, 11463 (2000).

    Article  Google Scholar 

  30. 30.

    G.H. Kelsall, S. Tang, S. Yurdakul, and A. Smith, “Electrophoretic Behaviour of Bubbles in Aqueous Electrolytes,” J. Chem. Soc. Faraday Trans. 92, 3887 (1996).

    Article  Google Scholar 

  31. 31.

    N.F. Bunkin and F.V. Bunkin, “Bubbstons: Stable Microscopic Gas Bubbles in Very Dilute Electrolytic Solutions,” JETP. 74, 271 (1992).

    Google Scholar 

  32. 32.

    N.F. Bunkin and A.V. Shkirin, “Nanobubble Clusters of Dissolved Gas in Aqueous Solutions of Electrolyte. II. Theoretical Interpretation,” J. Chem. Phys. 137, 054707 (2012).

    Article  ADS  Google Scholar 

  33. 33.

    N.F. Bunkin and F.V. Bunkin, “Bubston Structure of Water and Aqueous Solutions of Electrolytes,” Phys. Wave Phenom. 21(2), 81 (2013) [DOI: 10.3103/S1541308X13020015].

    Article  Google Scholar 

  34. 34.

    R.P. Berkelaar, H.J.W. Zandvliet, and D. Lohse, “Covering Surface Nanobubbles with NaCl Nanoblanket,” Langmuir. 29, 11337 (2013).

    Article  Google Scholar 

  35. 35.

    N.F. Bunkin, N.V. Suyazov, A.V. Shkirin, P.S. Ignatiev, and K.V. Indukaev, “Nano-Scale Structure of Dissolved Air Bubbles in Water As Studied by Measuring the Elements of the Scattering Matrix,” J. Chem. Phys. 130(13), 134308 (2009)

    Article  ADS  Google Scholar 

  36. 36.

    N.F. Bunkin, A.V. Shkirin, V.A. Kozlov, and A.V. Starosvetskiy, “Laser Scattering in Water and Aqueous Solutions of Salts,” Proc. SPIE. 7376, 73761D (2010)

    Article  ADS  Google Scholar 

  37. 37.

    N.F. Bunkin, B.W. Ninham, P.S. Ignatiev, V.A. Kozlov, A.V. Shkirin, and A.V. Starosvetskij, “Long-Living Nanobubbles of Dissolved Gas in Aqueous Solutions of Salts and Erythrocyte Suspensions,” J. Biophoton. 4(3), 150 (2011).

    Article  Google Scholar 

  38. 38.

    N.F. Bunkin, A.V. Shkirin, P.S. Ignatiev, L.L. Chaikov, I.S. Burkhanov, and A.V. Starosvetskiy, “Nanobubble Clusters of Dissolved Gas in Aqueous Solutions of Electrolyte. I. Experimental Proof,” J. Chem. Phys. 137, 054706 (2012).

    Article  ADS  Google Scholar 

  39. 39.

    N.F. Bunkin, S.O. Yurchenko, N.V. Suyazov, and A.V. Shkirin, “Structure of the Nanobubble Clusters of Dissolved Air in Liquid Media,” J. Biol. Phys. 38, 121 (2012).

    Article  Google Scholar 

  40. 40.

    B.J. Berne and R. Pecora, Dynamic Light Scattering (Krieger,Malabar, Florida, 1990).

    Google Scholar 

  41. 41.

    B. Chu, Laser Light Scattering (Academic, N.Y., 1974).

    Google Scholar 

  42. 42.

    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol.5: Statistical Physics (Pergamon, Oxford, 1980).

    Google Scholar 

  43. 43.

    J.S. Bendat and A.G. Piersol, Random Data: Analysis & Measurement Procedures (Wiley- Interscience, N.Y., 2000).

    Google Scholar 

  44. 44.

    V.V. Protopopov, Laser Heterodyning (Springer Series in Optical Sciences, Springer, Heidelberg, 2009).

    Book  Google Scholar 

  45. 45.

    Photon Correlation and Light Beating Spectroscopy. Ed. by H.S. Cummins and E.R. Pike (Plenum, N.Y., 1974).

    Google Scholar 

  46. 46.

    T. Yoshimura, “Statistical Properties of Dynamic Speckles,” J. Opt. Soc. Am. 3, 1032 (1986).

    Article  ADS  Google Scholar 

  47. 47.

    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol.6: Hydrodynamics (Pergamon, Oxford, 1980).

    Google Scholar 

  48. 48.

    J.K.G. Dhont, An Introduction to the Dynamics of Colloids (Elsevier, Amsterdam, 1996).

    Google Scholar 

  49. 49.

    A.N. Tikhonov and V.Y. Arsenin, Solution of Ill- Posed Problems (Winston & Sons, Washington, 1977).

    Google Scholar 

  50. 50.

  51. 51.

    H.C. van de Hulst, Light Scattering by Small Particles (Dover, N.Y., 1981).

    Google Scholar 

  52. 52.

    M.I. Mishchenko, L.D. Travis, and A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  53. 53.

    I.L. Fabelinskii, Molecular Scattering of Light (Plenum, N.Y., 1968).

    Book  Google Scholar 

  54. 54.

    J.H. Hildebrand and R.H. Lamoreaux, “Diffusivity of Gases in Liquids,” Proc. Nat. Acad. Sci. USA. 71(9), 3321 (1974).

    Article  ADS  Google Scholar 

  55. 55.

    N.F. Bunkin and F.V. Bunkin, “The New Concepts in the Optical Breakdown of Transparent Liquids,” Laser Phys. 3(1), 63 (1993).

    Google Scholar 

  56. 56.

    N.F. Bunkin, O.A. Kiseleva, A.V. Lobeyev, T.G. Movchan, B.W. Ninham, and O.I. Vinogradova, “Effect of Salts and Dissolved Gas on Optical Cavitation Near Hydrophobic and Hydrophilic Surfaces,” Langmuir. 13(11), 3024 (1997).

    Article  Google Scholar 

  57. 57.

    N.F. Bunkin and A.V. Lobeyev, “Influence of Dissolved Gas on Optical Breakdown and Small-Angle Scattering of Light in Liquids,” Phys. Lett. A. 229(5), 327 (1997).

    Article  ADS  Google Scholar 

  58. 58.

    N.F. Bunkin, B.W. Ninham, V.A. Babenko, N.V. Suyazov, and A.A. Sychev, “Role of Dissolved Gas in Optical Breakdown of Water: Differences Between Effects Due to Helium and Other Gases,” J. Phys. Chem. B. 114(23), 7743 (2010).

    Article  Google Scholar 

  59. 59.

    P. Ball and E. Ben-Jacob, “Water as the Fabric of Life,” Eur. Phys. J. Spec. Top. 223, 849 (2014).

    Article  Google Scholar 

  60. 60.

    R. Jullien, “Aggregation Phenomena and Fractal Aggregates,” Cont. Phys. 28, 477 (1987).

    Article  ADS  Google Scholar 

  61. 61.

    N.F. Bunkin, A.V. Shkirin, N.V. Suyazov, and A.V. Starosvetskiy, “Calculations of Light Scattering Matrices for Stochastic Ensembles of Nanosphere Clusters,” J. Quant. Spectr. Rad. Trans. 123, 23 (2013).

    Article  ADS  Google Scholar 

  62. 62.

    N.F. Bunkin, S.O. Yurchenko, N.V. Suyazov, A.V. Starosvetskiy, A.V. Shkirin, and V.A. Kozlov, “Modeling the Cluster Structure of Dissolved Air Nanobubbles in Liquid Media,” in Mathematics Research Developments. Classification and Application of Fractals, Ed. by W.L. Hagen (Nova Science Publishers, N.Y., 2011).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. F. Bunkin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bunkin, N.F., Shkirin, A.V., Babenko, V.A. et al. Laser diagnostics of the Bubston phase in the bulk of aqueous salt solutions. Phys. Wave Phen. 23, 161–175 (2015).

Download citation


  • Refractive Index
  • Dynamic Light Scattering
  • Wave Phenomenon
  • Optical Breakdown
  • Aqueous Salt Solution