Skip to main content
Log in

Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers

  • Fiber Optic Systems
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

We have modeled and simulated the effect of fiber attenuation and dispersion on the maximum fiber length of 40-Gb/s optical fiber links using directly modulated high-speed laser diodes. We present the modulation characteristics of multiple-quantum-well laser diodes with a modulation bandwidth reaching 28 GHz, including the eye diagram and frequency chirp. We compare new results obtained using return-to-zero (RZ) and non-return-to-zero (NRZ) patterns of pseudorandom modulation bits. The characteristic relations for the bit error rate and received power are simulated and the receiver sensitivity of the fiber communication system is evaluated. The eye diagrams of the received signal at the fiber attenuation and dispersion-limited transmission distances are characterized. The results show that the laser chirp operates with the fiber dispersion to limit the fiber length to 2.51 and 1.37 km under the RZ and NRZ bit patterns, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Dalir and F. Koyama, “Bandwidth Enhancement of Single-Mode VCSEL with Lateral Optical Feedback of Slow Light,” IEICE Electron. Exp. 8(13), 1075 (2011).

    Article  Google Scholar 

  2. K. Petermann, Laser Diode Modulation and Noise (Kluwer Acad. Publ., Dordrecht, 1988).

    Book  Google Scholar 

  3. K. Sato, S. Kuwahar, and Y. Miyamoto, “Chirp Characteristics of 40-Gb/s Directly Modulated Distributed-Feedback Laser Diodes,” J. Lightwave Technol. 23, 3790 (2005).

    Article  ADS  Google Scholar 

  4. K. Yvind, D. Larsson, L.J. Christiansen, C. Angelo, L.K. Oxenlowe, J. Mork, D. Birkedal, J.M. Hvan, and J. Hanberg, “Low-Jitter and High-Power 40-GHz All-Active Mode-Locked Lasers,” IEEE Photon. Tech. Lett. 16, 975 (2004).

    Article  ADS  Google Scholar 

  5. R.G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. (Springer, N.Y., 2009).

    Book  Google Scholar 

  6. F.S. Ujager, S.M.H. Zaidi, and U. Younis, “A Review of Semiconductor Lasers for Optical Communications,” in Proceedings of the High Capacity Optical Networks and Enabling Technologies (HONET) (Cairo, 2010), pp. 107–111.

    Google Scholar 

  7. B. Woodward and E.B. Husson, Fiber Optics Installer and Technician Guide (SYBEX, Alameda, Calif., 2005).

    Google Scholar 

  8. ITU-T Draft Recommendation G. 693, “Optical Interfaces for Intra-Office Systems,” 2001.

    Google Scholar 

  9. C.H. Henry, “Phase Noise in Injection Lasers,” IEEE J. Lightwave Technol. 4, 298 (1986).

    Article  ADS  Google Scholar 

  10. S. Abdulrhamnn, M. Ahmed, and M. Yamada, “A New Model of Analysis of Semiconductor Laser Dynamics under Strong Optical Feedback in Fiber Communication Systems,” Proc. SPIE. 4986, 409 (2003).

    Google Scholar 

  11. G.P. Agrawal, Fiber-Optic Communication Systems (Wiley, N.Y., 2002).

    Book  Google Scholar 

  12. M.F. Ahmed, A.H. Bakry, and F.T. Albelady, “Digital Modulation Characteristics of High-Speed Semiconductor Laser for Use in Optical Communication Systems,” Arab. J. Sci. Eng. 39, 5745 (2014).

    Article  Google Scholar 

  13. T.L. Koch and J.E. Bowers, “Nature of Wavelength Chirping in Directly Modulated Semiconductor Lasers,” Electron. Lett. 20, 1038 (1984).

    Article  Google Scholar 

  14. K.Y. Lau, “Gain Switching of Semiconductor Injection Lasers,” J. Appl. Phys. Lett. 52, 257 (1988).

    Article  ADS  Google Scholar 

  15. H. Liu, S. Oshiba, Y. Ogawa, and Y. Kawai, “Method of Generating Nearly Transform-Limited Pulses from Gain-Switched Distributedfeedback Laser Diodes and Its Application to Soliton Transmission,” J. Opt. Lett. 17, 64 (1992).

    Article  ADS  Google Scholar 

  16. E. Peral, W.K. Marshall, and A. Yariv, “Precise Measurement of Semiconductor Laser Chirp Using Effect of Propagation in Dispersive Fiber and Application to Simulation of Transmission through Fiber Gratings,” J. Lightwave Technol. 16, 1874 (1998).

    Article  ADS  Google Scholar 

  17. A. Villafranca, J. Lasobras, and I. Garcés, “Precise Characterization of the Frequency Chirp in Directly Modulated DFB Laser,” in Proceedings of the 6th Spanish Conference on Electron Devices (Madrid, 2007), pp. 173–176.

    Google Scholar 

  18. O. Boukari, L. Hassine, O. Latry, M. Ketata, and H. Bouchriha, “Characterization of the Chirp in Semiconductor Laser under Modulation,” Mater. Sci. Eng. 28, 671 (2008).

    Article  Google Scholar 

  19. P. Krehlik, “Directly Modulated Lasers in Negative Dispersion Fiber Links,” Optoelectron. Rev. 15, 71 (2007).

    ADS  Google Scholar 

  20. M. Ahmed, “Modeling and Simulation of Dispersion-Limited Fiber Communication Systems Employing Directly Modulated Laser Diodes,” Indian J. Phys. 86, 1013 (2012).

    Article  ADS  Google Scholar 

  21. S. Balle, M. Homar, and M.S. Miguel, “Statistical Properties of the Spectrum of Light Pulses in Fast Pseudorandom Word Modulation of a Single-Mode Semiconductor Laser,” IEEE J. Quantum Electron. 31, 1401 (1995).

    Article  ADS  Google Scholar 

  22. A. Yin, L. Li, and X. Zhang, “Analysis of Modulation Format in the 40 Gbit/s Optical Communication System,” Optik-Int. J. Light Electron. Opt. 121, 1550 (2010).

    Article  Google Scholar 

  23. D. Liu, L. Wang, and J.-J. He, “Rate Equation Analysis of High Speed Q-Modulated Semiconductor Laser,” J. Lightwave Technol. 28, 3128 (2010).

    ADS  Google Scholar 

  24. M. Ahmed, S. Mahmoud, and A. Mahmoud, “Influence of Pseudorandom Bit Format on the Direct Modulation Performance of Semiconductor Lasers,” Pramana J. Phys. 79, 1443 (2012).

    Article  ADS  Google Scholar 

  25. M. Ahmed, S.W.Z. Mahmoud, and A.A. Mahmoud, “Comparative Study on Modulation Dynamic Characteristics of Laser Diodes Using RZ and NRZ Bit Formats,” Int. J. Num. Model. 27, 138 (2013).

    Article  Google Scholar 

  26. M.J. Potasek and G.P. Agrawa, “Self-Amplitude Modulation of Opticl Pulses in Nonlinear Dispersive Fibers,” Phys. Rev. A. 35, 3862 (1998).

    Google Scholar 

  27. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

    Google Scholar 

  28. M. Ahmed and A. El-Lafi, “Analysis of Small-Signal Intensity Modulation of Semiconductor Lasers Taking Account of Gain Suppression,” Pramana J. Phys. 71, 99 (2008).

    Article  ADS  Google Scholar 

  29. K. Sato, S. Kuwahara, Y. Miyamoto, and N. Shimizu, “40 Gbit/s Direct Modulation of Distributed Feedback Laser for Very-Short-Reach Optical Links,” Elecron. Lett. 38, 816 (2002).

    Article  Google Scholar 

  30. N. Suzuki and T. Ozeki, “Simultaneous Compensation of Laser Chirp, Kerr Effect, and Dispersion in 10 Gb/s Long Haul Transmission Systems,” J. Lightwave Technol. 11, 1486 (1994).

    Article  ADS  Google Scholar 

  31. S.W.Z. Mahmoud, M. Ahmed, and R. Michalzik, “Influence of Optical Feedback-Induced Phase on Turn-On Dynamics of Vertical-Cavity Surface-Emitting Lasers,” in Proceedings of the 46th IEEE Midwest Symposium on Circuits and Systems (MWSCAS’ 2003). Vol. 3, pp. 1354–1358 (2004).

    Article  Google Scholar 

  32. M. Ahmed, M. Yamada, and S.W.Z. Mahmoud, “Analysis of Semiconductor Laser Dynamics under Gigabit Rate Modulation,” J. Appl. Phys. 101, 3119 (2007).

    Article  Google Scholar 

  33. M. Ahmed, M. Yamada, and M. Saito, “Numerical Modeling of Intensity and Phase Noises in Semiconductor Lasers,” IEEE J. Quantum Electron. 37, 1600 (2001).

    Article  ADS  Google Scholar 

  34. M. Ahmed, “Influence of Transmission Bit Rate on Performance of Optical Fiber Communication Systems with Direct Modulation of Laser Diodes,” J. Phys. D. 42, 185104 (2009).

    Google Scholar 

  35. I. Kim, T.J. Miller, and Y.K. Park, “10-Gb/s Transmission Using 1.3-µm Low-Chirp High-Power Directly Modulated, Packaged DFB Laser Module for Short Distance (<50 km) Applications,” IEEE Photon. Technol. Lett. 9, 1167 (1997).

    Article  ADS  Google Scholar 

  36. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s Transmission of 1.55-µm Directly Modulated Signal over 100 km of Negative Dispersion Fiber,” IEEE Photon. Technol. Lett. 13, 735 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M. Effect of fiber attenuation and dispersion on the transmission distance of 40-Gb/s optical fiber communication systems using high-speed lasers. Phys. Wave Phen. 22, 266–272 (2014). https://doi.org/10.3103/S1541308X14040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X14040104

Keywords

Navigation