Physics of Wave Phenomena

, Volume 22, Issue 1, pp 25–30 | Cite as

Graphene quasi-energy spectrum under high-frequency electromagnetic radiation

  • S. V. KryuchkovEmail author
  • E. I. Kukhar’
  • O. S. Nikitina
Nonlinear Microwaves in Crystals


The effective spectrum of electron states in graphene exposed to a circularly polarized electromagnetic wave is calculated. The bandgap in the graphene spectrum is shown to increase under exposure to a high-frequency electromagnetic wave. The effect of the change in the bandgap on the graphene magnetoconductivity is studied.


Wave Phenomenon Hall Conductivity Phene Graphene Spectrum Gapless Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N.M.R. Peres, “The Transport Properties of Graphene,” J. Phys: Cond. Matter. 21, 323201 (2009).Google Scholar
  2. 2.
    E. McCann and V.I. Fal’ko, “Landau-Level Degeneracy and Quantum Hall Effect in a Graphite Bilayer,” Phys. Rev. Lett. 96, 086805 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. Mattausch and O. Pankratov, “Ab initio Study of Graphene on SiC,” Phys. Rev. Lett. 99, 076802 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, “Substrate-Induced Bandgap Opening Epitaxial Graphene,” Nature Mater. 6, 770 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties of Graphene: A Theoretical Perspective,” Adv. Phys. 59, 261 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    T. Shen, Y.Q. Wu, M.A. Capano, L.P. Rokhinson, L.W. Engel, and P.D. Ye, “Magneto-Conductance Oscillations in Graphene Antidot Arrays,” Appl. Phys. Lett. 93, 122102 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    D.S.L. Abergel and T. Chakraborty, “Generation of Valley Polarized Current in Bilayer Graphene,” Appl. Phys. Lett. 95, 062107 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, and H.B. Weber, “Quantum Oscillations and Quantum Hall Effect in Epitaxial Graphene,” Phys. Rev. B. 81, 195434 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    V.P. Gusynin, S.G. Sharapov, and J.P. Carbotte, “Magneto-Optical Conductivity in Graphene,” J. Phys.: Cond.Matter. 19, 026222 (2007).ADSGoogle Scholar
  10. 10.
    D. Bolmatov and C.-Y. Mou, “Tunneling Conductance of the Graphene SNS Junction with a Single Localized Defect,” JETP. 110, 613 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    D. Bolmatov and C.-Y. Mou, “Josephson Effect in Graphene SNS Junction with a Single Localized Defect,” Phys. B: Cond. Matter. 405, 2896 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Patel, N. Davies, V. Cheianov, and V.I. Fal’ko, “Classical and Quantum Magneto-Oscillations of Current Flow near a p-n Junction in Graphene,” Phys. Rev. B. 86, 081413(R) (2012).ADSCrossRefGoogle Scholar
  13. 13.
    S.V. Kryuchkov, E.I. Kukhar’, and D.V. Zav’yalov, “Conductivity of the Graphene in the Transversal Magnetic Field: Relaxation Time Approximation with Monte-Carlo Method,” Phys. E: Low-Dimen. Systems and Nanostruct. 53, 124 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    D. Bolmatov and C.-Y. Mou, “Graphene-Based Modulation-Doped Superlattice Structures,” JETP. 112, 102 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    D. Bolmatov and D.V. Zavialov, “Conductance Enhancement Due to Atomic Potential Fluctuations in Graphene,” J. Appl. Phys. 112, 103703 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W.A. deHeer, “Landau Level Spectroscopy of Ultrathin Graphite Layers,” Phys. Rev. Lett. 97, 266405 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    L.A. Falkovsky, “Optical Properties of Graphene and IV–VI Semicondactors,” Phys.-Usp. 51, 887 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Mikhailov, “Electromagnetic Response of Graphene: Non-Linear Effects,” Phys. E: Low-Dimen. Systems and Nanostruct. 40, 2626 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Mikhailov and K. Ziegler, “Nonlinear Electromagnetic Response of Graphene: Frequency Multiplication and the Self-Consistent-Field Effects,” J. Phys. Cond. Matter. 20, 384204 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Mikhailov, “Non-Linear Electromagnetic Response of Graphene,” Europhys. Lett. 79, 27002 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, and S.A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105, 097401 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    X.-L. Zhang, X. Zhao, Z.-B. Liu, S. Shi, W.-Y. Zhou, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, “Nonlinear Optical and Optical Limiting Properties of Graphene Oxide — Fe3O4 Hybrid Material,” J. Opt. 13, 075202 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    V.P. Gusynin, S.G. Sharapov, and J.P. Carbotte, “Unusual Microwave Response of Dirac Quasiparticles in Graphene,” Phys. Rev. Lett. 96, 256802 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science. 320, 1308 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    Neetu Agrawal (Garg), S. Ghosh, and M. Sharma, “Electron Optics with Dirac Fermions: Electron Transport in Monolayer and Bilayer Graphene through Magnetic Barrier and Their Superlattices,” Int. J. Mod. Phys. B. 27, 1341003 (2013).ADSCrossRefGoogle Scholar
  26. 26.
    V.I. Konchenkov, S.V. Kryuchkov, T.A. Nosaeva, and D.V. Zav’yalov, “Mutual Rectification of Alternating Currents in Graphene in the Field of Two Electromagnetic Waves,” Phys. Wave Phenom. 21(1), 56 (2013) [DOI: 10.3103/S1541308X13010111].ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Kryuchkov and E.I. Kukhar’, “The Solitary Electromagnetic Waves in the Graphene Superlattice,” Phys. B: Cond. Matter. 408, 188 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    S.V. Kryuchkov, E.I. Kukhar’, and D.V. Zav’yalov, “Charge Dynamics in the Graphene and in the Graphene Superlattice under the High-Frequency Electric Field: Semiclassical Approach,” Laser Phys. 23, 065902 (2013).CrossRefGoogle Scholar
  29. 29.
    D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A.C. Ferrari, “Sub 200 fs Pulse Generation from a Graphene Mode-Locked Fiber Laser,” Appl. Phys. Lett. 97, 203106 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens, “Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain,” Nature Nanotech. 7, 363 (2012).ADSCrossRefGoogle Scholar
  31. 31.
    S. Thongrattanasiri, F.H.L. Koppens, and F.J. Garcia de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108, 047401 (2012).ADSCrossRefGoogle Scholar
  32. 32.
    Z.D. Kvon, D.A. Kozlov, S.N. Danilov, C. Zoth, P. Vierling, S. Stachel, V.V. Bel’kov, A.K. Bakarov, D.V. Dmitriev, A.I. Toropov, and S.D. Ganichev, “Terahertz Radiation-Induced Magnetoresistance Oscillations of a High-Density and High-Mobility Two-Dimensional Electron Gas,” JETP Lett. 97, 41 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Syzranov, M.V. Fistul, and K.B. Efetov, “Effect of Radiation on Transport in Graphene,” Phys. Rev. B. 78, 045407 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    F.J. Lopez-Rodriguez and G.G. Naumis, “Analytic Solution for Electrons and Holes in Graphene under Electromagnetic Waves: Gap Appearance and Nonlinear Effects,” Phys. Rev. B. 78, 201406(R) (2008).ADSCrossRefGoogle Scholar
  35. 35.
    T. Oka and H. Aoki, “Photovoltaic Hall Effect in Graphene,” Phys. Rev. B. 79, 081406(R) (2009).ADSCrossRefGoogle Scholar
  36. 36.
    H.L. Calvo, H.M. Pastawski, S. Roche, L.E.F. Foa Torres, “Tuning Laser-Induced Band Gaps in Graphene,” Appl. Phys. Lett. 98, 232103 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    D.S.L. Abergel and T. Chakraborty, “Irradiated Bilayer Graphene,” Nanotechnol. 22, 015203 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    S.V. Kryuchkov, E.I. Kukhar’, and O.S. Nikitina, “Electron States and Quasi-Energy Spectrum of the Graphene Exposed to the Electromagnetic Wave,” J. Nano- and Elect. Phys. 5, 03005 (2013).Google Scholar
  39. 39.
    Yu.I. Balkarey and E.M. Epshtein, Phys. Solid State. 17, 2313 (1975).Google Scholar
  40. 40.
    N.N. Bogoliubov and Y.A. Mitropolski, Asymptotic Methods in the Theory of Non-Linear Oscillations (Gordon and Breach, N.Y., 1961).Google Scholar
  41. 41.
    L.D. Landau and E.M. Lifshitz, Mechanics (Butterworth-Heinemann, Oxford, 1976), p. 224.Google Scholar
  42. 42.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions (MC Graw-Hill Book Company, N.Y., 1953).Google Scholar
  43. 43.
    L.D. Landau and E.M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1980), p. 544.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
    • 2
    Email author
  • E. I. Kukhar’
    • 1
  • O. S. Nikitina
    • 1
  1. 1.Volgograd State Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations