Skip to main content
Log in

Control of the threshold intensity and hysteresis cycle of optical Bi(multi)stability via atomic injection and exit rates from cavity

  • Nonlinear Optics
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The optical bistability (OB) and multistability (OM) in an open Λ-type three-level atomic system inside a ring cavity are investigated. It is found that the ratio of atomic injections β and the exit rates r 0 from cavity evidently affects the threshold intensity of OB and OM. The effect of incoherent pumping field on the OB and OM of a medium is discussed. We show that the bistable behavior of the open system significantly differs from that in a corresponding closed system, especially with an increase in the incoherent pump rate. The intensity threshold is reduced in an open system but increases in a closed system. In addition, the dependence of OB and OM in an open system on spontaneously generated coherence, the relative phase the between probe and coupling fields, the coupling-field intensity, and the cooperation parameter are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.O. Scully and M. Fleischhauer, “Lasers without Inversion,” Science. 263, 337 (1994).

    Article  ADS  Google Scholar 

  2. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Yu. Rostovtsev, E.S. Fry, and M.O. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  3. S.E. Harris, “Electromagnetically Induced Transparency,” Phys. Today. 50, 36 (1997).

    Article  Google Scholar 

  4. Y. Zhao, C.K. Wu, B.S. Ham, M.K. Kim, and E. Awad, “Microwave Induced Transparency in Ruby,” Phys. Rev. Lett. 79, 641 (1997).

    Article  ADS  Google Scholar 

  5. B.S. Ham and P.R. Hemmer, “Coherence Switching in a Four-Level System: Quantum Switching,” Phys. Rev. Lett. 84, 4080 (2000).

    Article  ADS  Google Scholar 

  6. M.D. Lukin and A. Imamoğlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000).

    Article  ADS  Google Scholar 

  7. M.D. Lukin, S.F. Yelin, M. Fleischhauer, and M.O. Scully, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. A. 60, 3225 (1999).

    Article  ADS  Google Scholar 

  8. K.J. Boller, A. Imamoglu, and S.E. Harris, “Observation of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 66, 2593 (1991).

    Article  ADS  Google Scholar 

  9. J.E. Field, K.H. Hahn, and S.E. Harris, “Observation of Electromagnetically Induced Transparency in Collisionally Broadened Lead Vapor,” Phys. Rev. Lett. 67, 3062 (1991).

    Article  ADS  Google Scholar 

  10. S.H. Asadpour, H.R. Hamedi, and M. Sahrai, “Phase Control of Kerr Nonlinearity Due to Quantum Interference in a Four-Level N-Type Atomic System,” J. Lumin. 132, 2188 (2012).

    Article  Google Scholar 

  11. M. Sahrai, S.H. Asadpour, H. Mahrami, and R. Sadighi-Bonabi, “Controlling the Optical Bistability Via Quantum Interference in a Four-Level N-Type Atomic System,” J. Lumin. 131, 1682 (2011)

    Article  Google Scholar 

  12. P. W. Smith and E.H. Turner, “ABistable Fabry-Perot Resonator,” Appl. Phys. Lett. 30(6), 280 (1977).

    Article  ADS  Google Scholar 

  13. J.Y. Gao, L.M. Narducci, L.S. Schutman, M. Squicciarini, and J.M. Yuan, “Route to Chaos in a Hybrid Bistable System with Delay,” Phys. Rev. A. 28(5), 2910 (1983).

    Article  ADS  Google Scholar 

  14. J.Y. Gao, J.M. Yuan, and L.M. Narducci, “Instabilities and Chaotic Behavior in a Hybird Bistable System with a Short Delay,” Opt. Commun. 44(3), 201 (1983).

    Article  ADS  Google Scholar 

  15. J.Y. Gao, G.X. Jin, J. W. Sun, X.Z. Guo, Z.R. Zheng, N.B. Abraham, and L.M. Narducci, “The Effect of Input Modulation on a Bistable System with Delay,” Opt. Commun. 71(3), 224 (1989).

    Article  ADS  Google Scholar 

  16. J.-P. Goedgebuer, L. Larger, H. Porte, and F. Delorme, “Chaos in Wavelength with a Feedback Tunable Laser Diode,” Phys. Rev. E. 57(3), 2795 (1998).

    Article  ADS  Google Scholar 

  17. J. Chrostowski and C. Delisle, “Bistable Optical Switching Based on Brag Diffraction,” Opt. Commun. 41(2), 71 (1982).

    Article  ADS  Google Scholar 

  18. J. Chrostowski, R. Vallee, and C. Delisle, “Noise Versus Chaos in Acousto-Optic Bistability,” Phys. Rev. A. 30(1), 336 (1984).

    Article  ADS  Google Scholar 

  19. H. Jerominek, J.Y.D. Pomerleau, R. Tremblay, and C. Delisle, “An Integrated Acousto-Optic Bistable Device,” Opt. Commun. 51(1), 6 (1984).

    Article  ADS  Google Scholar 

  20. Sh. Umegaki, H. Inoue, and T. Yoshino, “Optical Bistability Using a Magneto-Optic Modulator,” Appl. Phys. Lett. 38(10), 752 (1981).

    Article  ADS  Google Scholar 

  21. S.H. Asadpour and A. Eslami-Majd, “Controlling the Optical Bistability and Transmission Coefficient in a Four-Level Atomic Medium,” J. Lumin. 132, 1477 (2012).

    Article  Google Scholar 

  22. H.R. Hamedi, A. Sari, M. Sahrai, and S.H. Asadpour, “Effect of Quantum Interference from Incoherent Pumping Field and Spontaneous Emission on Controlling the Optical Bistability and Multi-Stability,” Commun. Theor. Phys. 59, 199 (2013).

    Article  ADS  MATH  Google Scholar 

  23. S.H.R. Hamedi, S.H. Asadpour, M. Sahrai, B. Arzhang, and D. Taherkhani, “Optical Bistability and Multi-Stability in a Four-Level Atomic Scheme,” Opt. Quant. Electron. 45, 295 (2013).

    Article  Google Scholar 

  24. Y. Li and M. Xiao, “Observation of Quantum Interference Between Dressed States in an Electromagnetically Induced Transparency,” Phys. Rev. A. 51, 4959 (1995).

    Article  ADS  Google Scholar 

  25. Jia-Hua Li, Xin-You L?, Jing-Min Luo, and Qiu-Jun Huang, “Optical Bistability and Multistability Via Atomic Coherence in an N-Type Atomic Medium,” Phys. Rev. A. 74, 035801 (2006).

    Article  ADS  Google Scholar 

  26. Dong-chao Cheng, Cheng-pu Liu, and Shang-qing Gong, “Optical Bistability Via Amplitude and Phase Control of a Microwave Field,” Opt. Commun. 263, 111 (2006).

    Article  ADS  Google Scholar 

  27. M.A. Antón and O.G. Calderón, “Optical Bistability Using Quantum Interference in V-Type Atoms,” J. Opt. B: Quantum Semiclass. Opt. 4, 91 (2002).

    Article  ADS  Google Scholar 

  28. Dong-chao Cheng, Cheng-pu Liu, and Shang-qing Gong, “Optical Bistability and Multistability Via the Effect of Spontaneously Generated Coherence in a Three-Level Ladder-Type Atomic System,” Phys. Lett. A. 332, 244 (2004).

    Article  ADS  MATH  Google Scholar 

  29. Jiahua Li, “Coherent Control of Optical Bistability in aMicrowave-Driven V-Type Atomic System,” Physica D. 228 148 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. W. Harshawardhan and G.S. Agarwal, “Controlling Optical Bistability Using Electromagnetic-Field-Induced Transparency and Quantum Interferences,” Phys. Rev. A. 53, 1812 (1996).

    Article  ADS  Google Scholar 

  31. K.I. Osman, “Effects of the Control Field on the OpticalMultistability in V-Type Three-Level Atomic System,” Opt. Commun. 259, 194 (2006).

    Article  ADS  Google Scholar 

  32. M. Sahrai, S.H. Asadpour, and R. Sadighi-Bonabi, “Optical Bistability Via Quantum Interference from Incoherent Pumping and Spontaneous Emission,” J. Lumin. 131, 2395 (2011).

    Article  Google Scholar 

  33. Zhiping Wang and Hongyi Fan, “Phase Dependent Optical Bistability and Multistability in a Semiconductor Quantum Well System,” J. Lumin. 130, 2084 (2010).

    Article  Google Scholar 

  34. Jiahua Li, Xiangying Hao, Jibing Liu, and Xiaoxue Yang, “Optical Bistability in a Triple Semiconductor Quantum Well Structure with Tunnelling-Induced Interference,” Phys. Lett. A. 372, 716 (2008).

    Article  ADS  MATH  Google Scholar 

  35. J.H. Lia and X.X. Yang, “Optical Bistability Via Tunable Fano-Type Interference in Asymmetric Semiconductor Quantum Wells,” Eur. Phys. J. B. 53, 449 (2006).

    Article  ADS  Google Scholar 

  36. H.R. Hamedi, A. Khaledi-Nasab, A. Raheli, B. Haddadpour-Khiaban, and M. Sahrai, “Optical Bistability in Low-Dimensional Semiconductor Heterostructures under CW Pump Laser and Infrared Pulse Signals,” Phys. Wave Phenom. 21(3), 214 (2013).

    Article  ADS  Google Scholar 

  37. S.Q. Gong, S.D. Du, Z.Z. Xu, and S.H. Pan, “Optical Bistability Via a Phase Fluctuation Effect of the Control Field,” Phys. Lett. A. 222, 237 (1996).

    Article  ADS  Google Scholar 

  38. A. Joshi and M. Xiao, “Optical Multistability in Three-Level Atoms Inside an Optical Ring Cavity,” Phys. Rev. Lett. 91, 143904 (2003).

    Article  ADS  Google Scholar 

  39. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling Optical Bistability in a Three-Level Atomic System,” Phys. Rev. A. 67, 041801(R) (2003).

    Article  ADS  Google Scholar 

  40. W.H. Xu, J.H. Wu, and J.Y. Gao, “Effects of SpontaneouslyGenerated Coherence on Transient Process in a Λ System,” Phys. Rev. A. 66, 063812 (2002).

    Article  ADS  Google Scholar 

  41. R. Bonifacio and L.A. Lugiato, “Instabilities for a Coherently Driven Absorber in a Ring Cavity,” Lett. Nuovo Cimento. 21, 505 (1978).

    Article  Google Scholar 

  42. R. Bonifacio and L.A. Lugiato, “Optical Bistability and Cooperative Effects in Resonance Fluorescence,” Phys. Rev. A. 18, 1129 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Hamedi.

About this article

Cite this article

Hamedi, H.R., Khaledi-Nasab, A., Ghaforyan, H. et al. Control of the threshold intensity and hysteresis cycle of optical Bi(multi)stability via atomic injection and exit rates from cavity. Phys. Wave Phen. 21, 274–282 (2013). https://doi.org/10.3103/S1541308X13040079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X13040079

Keywords

Navigation