Physics of Wave Phenomena

, Volume 21, Issue 3, pp 207–213 | Cite as

Absorption of electromagnetic waves by graphene

  • S. V. KryuchkovEmail author
  • E. I. Kukhar’
  • D. V. Zav’yalov
Electromagnetic Waves in Heterostructures


The power of the circularly polarized electromagnetic wave absorbed by graphene is calculated using the Boltzmann kinetic equation written in the relaxation approximation and the numerical Monte Carlo simulation. It is shown that in the limit of large radiation amplitudes the power absorbed by graphene is directly proportional to the amplitude irrespective of the electron gas statistics.


Electromagnetic Wave Optical Phonon Wave Phenomenon Acoustic Phonon Boltzmann Kinetic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Grapheme,” Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    N. M. R. Peres, “The Transport Properties of Grapheme,” J. Phys. Cond. Matter. 21, 323201 (2009).CrossRefGoogle Scholar
  3. 3.
    J. M. Pereira Jr., F.M. Peeters, A. Chaves, and G. A. Farias, “Klein Tunneling in Single and Multiple Barriers in Graphene,” Semicond. Sci. Technol. 25, 033002 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    E. R. Mucciolo and C. H. Lewenkopf, “Disorder and Electronic Transport in Graphene,” J. Phys: Cond. Matter. 22, 273201 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    H. Fukuyama, Y. Fuseya, M. Ogata, A. Kobayashi, and Y. Suzumura, “Dirac Electrons in Solids,” Phys. B: Cond. Matter. 407, 1943 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    A. Mattausch and O. Pankratov, “Ab initio Study of Graphene on SiC,” Phys. Rev. Lett. 99, 076802 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    S. Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A.H.Castro Neto, and A. Lanzara, “Substrate-Induced Bandgap Opening in Epitaxial Grapheme,” Nature Mater. 6, 770 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    J. Parashar and H. Sharma, “Optical Rectification in a Carbon Nanotube Array and Terahertz Radiation Generation,” Phys. E: Low-Dimen. Systems and Nanostruct. 44, 2069 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. Barbier, P. Vasilopoulos, and F. M. Peeters, “Extra Dirac Points in the Energy Spectrum for Superlattices on Single-Layer Graphene,” Phys. Rev. B. 81, 075438 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    D.V. Zavialov, V. I. Konchenkov, and S.V. Kryuchkov, “Transverse Current Rectification in a Graphene-Based Superlattice,” Semiconductors. 46, 109 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    S.V. Kryuchkov and E. I. Kukhar’, “Influence of the Constant Electric Field on the Mutual Rectification of the Electromagnetic Waves in Graphene Superlattice,” Phys. E: Low-Dimen. Systems and Nanostruct. 46, 25 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    M. Killi, S. Wu, and A. Paramekanti, “Graphene: Kinks, Superlattices, Landau Levels and Magnetotransport,” Int. J. Mod. Phys. B. 26, 1242007 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, “Landau Level Spectroscopy of Ultrathin Graphite Layers,” Phys. Rev. Lett. 97, 266405 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    L. A. Falkovsky, “Optical Properties of Graphene and IV-VI Semiconductors,” Phys.-Usp. 51, 887 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    V.P. Gusynin and S. G. Sharapov, “Transport of Dirac Quasiparticles in Graphene: Hall and Optical Conductivities,” Phys. Rev. B. 73, 245411 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic Properties of Disordered Two-Dimensional Carbon,” Phys. Rev. B. 73, 125411 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Zav’yalov, V. I. Konchenkov, and S.V. Kryuchkov, “Influence of a Magnetic Field on the Mutual Rectification of Alternating Currents Induced by Electromagnetic Waves in Graphene,” Phys. Solid State. 52, 800 (2010).CrossRefGoogle Scholar
  18. 18.
    D.V. Zav’yalov, V. I. Konchenkov, and S.V. Kryuchkov, “The Possibility of Cyclotron Echo Generation in Graphene on a SiC Substrate,” Phys.Wave Phenom. 19(4), 287 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent Nonlinear Optical Response of Graphene,” Phys. Rev. Lett. 105, 097401 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    S. A. Mikhailov, “Electromagnetic Response of Electrons in Graphene: Non-Linear Effects,” Phys. E: Low-Dimen. Systems and Nanostruct. 40, 2626 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    S. A. Mikhailov and K. Ziegler, “Nonlinear Electromagnetic Response of Graphene: Frequency Multiplication and the Self-Consistent-Field Effects,” J. Phys.: Cond. Matter. 20, 384204 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    D. S. L. Abergel and T. Chakraborty, “Irradiated Bilayer Graphene,” Nanotechnology. 22, 015203 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs Pulse Generation from a Graphene Mode-Locked Fiber Laser,” Appl. Phys. Lett. 97, 203106 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    S. Thongrattanasiri, F.H. L. Koppens, and F. J. Garcia de Abajo, “Complete Optical Absorption in Periodically Patterned Graphene,” Phys. Rev. Lett. 108, 047401 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens, “Hybrid Graphene-Quantum Dot Phototransistors with Ultrahigh Gain,” Nature Nanotech. 7, 363 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M. M. Chen, and Y. S. Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phys. Chem. C. 113, 13103 (2009).CrossRefGoogle Scholar
  27. 27.
    F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, and K. Ensslin, “Electronic Properties of Graphene Nanostructures,” J. Phys.: Cond. Matter. 23, 243201 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Bhattacharya and S. Mahapatra, “Quantum Capacitance in Bilayer Graphene Nanoribbon,” Phys. E: Low-Dimen. Systems and Nanostruct. 44, 1127 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    S. J. Haigh, A. Gholinia, R. Jalil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A.K. Geim, and R. Gorbachev, “Cross-Sectional Imaging of Individual Layers and Buried Interfaces of Graphene-Based Heterostructures and Superlattices,” Nature Mater. 11, 764 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    D. Bolmatov and Chung-Yu Mou, “Graphene-Based Modulation-Doped Superlattice Structures,” JETP. 112, 102 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh Electron Mobility in Suspended Graphene,” Solid State Commun. 146, 351 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    H. Sevincli, M. Topsakal, and S. Ciraci, “Superlattice Structures of Graphene-Based Armchair Nanoribbons,” Phys. Rev. B. 78, 245402 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    V. R. Sorochenko, E.D. Obraztsova, P.S. Rusakov, and M.G. Rybin, “Nonlinear Transmission of CO2 Laser Radiation by Graphene,” Quantum Electron. 42(10), 907 (2012).CrossRefGoogle Scholar
  34. 34.
    S.V. Kryuchkov and E. I. Kukhar’, “The Solitary Electromagnetic Waves in the Graphene Superlattice,” Phys. B: Cond. Matter. 408, 188 (2013).ADSCrossRefGoogle Scholar
  35. 35.
    S.V. Kryuchkov and E. I. Kukhar’, “Charge Dragged by the Solitary Electromagnetic Wave in the Graphene Superlattice,” Phys. E: Low-Dimen. Systems and Nanostruct. 48, 96 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    L. D. Landau and E.M. Lifshits, Statistical Physics (Physical and Mathematical Literature, Moscow, 2002).Google Scholar
  37. 37.
    R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles (Taylor & Francis Group, N.Y., 1988).zbMATHCrossRefGoogle Scholar
  38. 38.
    I. M. Sobol’, Numerical Monte Carlo Methods (Nauka, Moscow, 1973) [in Russian].Google Scholar
  39. 39.
    F. T. Vasko and V. Ryzhii, “Photoconductivity of Intrinsic Graphene,” Phys. Rev. B. 77, 195433 (2008).ADSCrossRefGoogle Scholar
  40. 40.
    T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic Transport in Graphene: A Semiclassical Approach Including Midgap States,” Phys. Rev. B. 76, 205423 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    E. H. Hwang and S.Das Sarma, “Acoustic Phonon Scattering Limited Carrier Mobility in Two-Dimensional Extrinsic Graphene,” Phys. Rev. B. 77, 115449 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
    • 2
    Email author
  • E. I. Kukhar’
    • 1
  • D. V. Zav’yalov
    • 1
    • 2
  1. 1.Volgograd State Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations