Advertisement

Physics of Wave Phenomena

, Volume 21, Issue 1, pp 56–61 | Cite as

Mutual rectification of alternating currents in graphene in the field of two electromagnetic waves

  • V. I. KonchenkovEmail author
  • S. V. Kryuchkov
  • T. A. Nosaeva
  • D. V. Zav’yalov
Nonlinear Microwaves in Crystals

Abstract

For graphene placed in a dc magnetic field and exposed to two electromagnetic waves of the same polarization but different frequencies, an expression for the direct current density in a direction perpendicular to the polarization plane of the waves is derived. The direct current component is nonzero for the wave frequency ratio equal to two; it is proportional to the magnetic field strength, the electric field strength of the higher-frequency wave, and the squared electric field strength of the lower-frequency wave. The physical mechanism of the current generation is similar to the Hall effect.

Keywords

Electromagnetic Wave Frequency Ratio Alternate Current Wave Phenomenon Transverse Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Schneider and K. Seeger, “Harmonic Mixing of Microwaves by Warm Electrons in Germanium,” Appl. Phys. Lett. 8(6), 133 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    T. Banys, J. Požela, and K. Repšas, “Investigation of the d.c. Electromotive Force in a Semiconductor Caused by the High a.c. Electric Field,” Lithuanian J. Phys. 6(3), 425 (1966).Google Scholar
  3. 3.
    W. Wonneberger and H.-J. Breymayer, “Asymptotics of Harmonic Microwave Mixing in a Sinusoidal Potential,” Z. Phys. B. Cond. Matter. 43(4), 329 (1981).CrossRefGoogle Scholar
  4. 4.
    N. H. Shon and V. H. Anh, “Photovoltaic Effect in Semiconductors Stimulated by an Additional Electromagnetic Wave,” Phys. Status Solidi B. 134(1), 363 (1986).ADSCrossRefGoogle Scholar
  5. 5.
    S. Mensa, G.M. Shmelev, and E. M. Epstein, “Mutual Rectification of Two Electromagnetic Waves in Superlattice,” Sov. Phys. J. 28(2), 112 (1985).Google Scholar
  6. 6.
    K. N. Alekseev, M.V. Erementchouk, and F.V. Kuzmartsev, “Direct-Current Generation Due to Wave Mixing in Semiconductors,” Europhys. Lett. 47(5), 595 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    K. Seeger, “High-Frequency-Induced Phase-Dependent dc Current by Bloch Oscillator Non-Ohmicity,” Appl. Phys. Lett. 76(1), 82 (2000).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    S. Stepanov, E. Hernández, and M. Plata, “Two-Wave Mixing of Orthogonally Polarized Waves Via Anisotropic Dynamic Gratings in Erbium-Doped Optical Fiber,” J. Opt. Soc. Am. B. 22, 1161 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Shorokhov, N. N. Khvastunov, T. Hyart, and K. N. Alekseev, “Generation of Direct Current in a Semiconductor Superlattice under the Action of a Bichromatic Field As a Parametric Effect,” JETP. 111(5), 822 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    S. S. Abukari, S. Y. Mensah, N. G. Mensah, K. A. Dompreh, A. Twum, and F.K.A. Allotey, “Direct Current Generation Due to Wave Mixing in Zigzag Carbon Nanotubes,” arXiv:1007.1772v1 (2010).Google Scholar
  11. 11.
    D.V. Zav’yalov, S.V. Kryuchkov, and E. I. Kukhar’, “Mutual Rectification of Cnoidal and Sinusoidal Electromagnetic Waves in a Superlattice,” Opt. Spectrosc. 100(6), 916 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    D.V. Zav’yalov, S.V. Kryuchkov, and É.V. Marchuk, “On the Possibility of Transverse Current Rectification in Graphene,” Tech. Phys. Lett. 34(11), 915 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    D.V. Zav’yalov, S.V. Kryuchkov, and T.A. Tyulkina, “Effect of Rectification of Current Induced by an Electromagnetic Wave in Graphene: A Numerical Simulation,” Semiconductors. 44(7), 879 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    D.V. Zav’yalov, V. I. Konchenkov, and S.V. Kryuchkov, “Mutual Rectification of Alternating Currents Induced by ElectromagneticWaves in Graphene,” Phys. Solid State. 51(10), 2157 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D.V. Zav’yalov, V. I. Konchenkov, and S.V. Kryuchkov, “Influence of a Magnetic Field on the Mutual Rectification of Alternating Currents Induced by Electromagnetic Waves in Graphene,” Phys. Solid State. 52(4), 800 (2010).CrossRefGoogle Scholar
  16. 16.
    D.V. Zav’yalov, V. I. Konchenkov, and S.V. Kryuchkov, “Mutual Rectification of Alternating Currents in Graphene,” Phys. Wave Phenom. 18(4), 284 (2010) [DOI: 10.3103/S1541308X10040096].CrossRefGoogle Scholar
  17. 17.
    S.V. Kryuchkov, E. I. Kukhar’, and V.A. Yakovenko, “Effect of the Mutual Rectification of Two Electromagnetic Waves with Perpendicular Polarization Planes in a Superlattice Based on Graphene,” Bull. Russ. Acad. Sci.: Phys. 74(12), 1679 (2010).zbMATHCrossRefGoogle Scholar
  18. 18.
    D.V. Zavialov, V. I. Konchenkov and S.V. Kruchkov, “Transverse Current Rectification in a Graphene-Based Superlattice,” Semicond. 46(1), 109 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science. 306, 666 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    S. DasSarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic Transport in Two-Dimensional Graphene,” Rev. Mod. Phys. 83(2), 407 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    J. Karch, P. Olbrich, M. Schmalzbauer, C. Brinsteiner, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, and S. D. Ganichev, “Photon Helicity Driven Electric Currents in Graphene,” arXiv:1002.1047v1 (2010).Google Scholar
  22. 22.
    S. Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lansara, “Substrate-Induced Bandgap Opening in Epitaxial Graphene,” Nature Mater. 6(10), 770 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    S. Yu. Davydov, “Electronic States in Epitaxial Graphene Fabricated on Silicon Carbide,” Semicond. 45(8), 1070 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, “Substrate-Induced Band Gap in Graphene on Hexagonal Boron Nitride: ab initio Density Functional Calculations,” Phys. Rev. B. 76, 073103 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    N. Kharche and S. K. Nayak, “Quasiparticle Band Gap Engineering of Graphene and Graphone on Hexagonal Boron Nitride Substrate,” Nano Lett. 11(12), 5274 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    J. Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres, “Electronic Properties of Bilayer and Multilayer Graphene,” Phys. Rev. B. 78(4), 045405 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the Electronic Structure of Bilayer Graphene,” Science. 313, 951 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, “Circular AC Hall Effect,” arXiv:1008.2116v1 (2010).Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • V. I. Konchenkov
    • 1
    Email author
  • S. V. Kryuchkov
    • 1
    • 2
  • T. A. Nosaeva
    • 1
  • D. V. Zav’yalov
    • 1
    • 2
  1. 1.Volgograd State Socio-Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations