Skip to main content
Log in

Interferometric diagnostics of femtosecond laser microplasma in gases

  • Interaction of Laser Radiation with Matter
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The laser plasma formed in gaseous media due to their optical breakdown under tightly focused femtosecond laser pulses has been experimentally investigated. Pump-probemicrointerferometry is chosen to perform spatial and temporal diagnostics of the plasma. Time dependences of the laser plasma electron density are obtained. It is shown that in breakdown of different gases (air, nitrogen, argon, and helium) at different pressures (in the range from 1 to 10 atm) the electron concentration continues to increase during ∼1 ps when the laser irradiation is over. This effect is related to the impact ionization of the plasma by the hot electrons formed in interaction of intense femtosecond laser pulses with matter. The results of theoretical simulation of the post-ionization processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-W. Bahk, P. Rousseau, T.A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G.A. Mourou, and V. Yanovsky, “Characterization of Focal Field Formed by a Large Numerical Aperture Paraboloidal Mirror and Generation of Ultra-High Intensity (1022Wcm−2),” Appl. Phys. B. 81(5), 727 (2005).

    Article  ADS  Google Scholar 

  2. P. B. Corkum and F. Krausz, “Attosecond Science,” Nature Phys. 3(6), 381 (2007).

    Article  ADS  Google Scholar 

  3. P. Antoine, A. L’Huillier, and M. Lewenstein, “Attosecond Pulse Trains Using High-Order Harmonics,” Phys. Rev. Lett. 77(7), 1234 (1996).

    Article  ADS  Google Scholar 

  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. DeSilvestri, and M. Nisoli, “Isolated Single-Cycle Attosecond Pulses,” Science. 314(5798), 443 (2006).

    Article  ADS  Google Scholar 

  5. T. Pfeifer, L. Gallmann, M. J. Abel, D. M. Neumark, and S. R. Leone, “Single Attosecond Pulse Generation in the Multicycle-Driver Regime by Adding a Weak Second-Harmonic Field,” Opt. Lett. 31(7), 975 (2006).

    Article  ADS  Google Scholar 

  6. T. Tajima and J. M. Dawson, “Laser Electron Accelerator,” Phys. Rev. Lett. 43(4), 267 (1979).

    Article  ADS  Google Scholar 

  7. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, K. T. Phuoc, “Principles and Applications of Compact Laser-Plasma Accelerators,” Nature Phys. 4(6), 447 (2008).

    Article  ADS  Google Scholar 

  8. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, “Monoenergetic Beams of Relativistic Electrons from Intense Laser-Plasma Interactions,” Nature. 431(7008), 535 (2004).

    Article  ADS  Google Scholar 

  9. J. Peatross, S. Backus, J. Zhou, M. M. Murnane, and H. C. Kapteyn, “Spectral-Spatial Measurements of Fundamental and Third-Harmonic Light of Intense 25-fs Laser Pulses Focused in a Gas Cell,” J. Opt. Soc. Am. B. 15(1), 186 (1998).

    Article  ADS  Google Scholar 

  10. S. Soubacq, P. Pignolet, E. Schall, and J. Batina, “Investigation of a Gas Breakdown Process in a Laser-Plasma Experiment,” J. Phys. D: Appl. Phys. 37(19), 2686 (2004).

    Article  ADS  Google Scholar 

  11. L. M. Davis, L. Q. Li, and D. R. Keefe, “Picosecond Resolved Evolution of Laser Breakdown in Gases,” J. Phys. D: Appl. Phys. 26(2), 222 (1993).

    Article  ADS  Google Scholar 

  12. V. Margetic, T. Ban, F. Leis, K. Niemax, and R. Hergenröder, “Hydrodynamic Expansion of a Femtosecond Laser Produced Plasma,” Spectrochim. Acta B: At. Spectrosc. 58(3), 415 (2003).

    Article  ADS  Google Scholar 

  13. P. Chessa, E. DeWispelaere, F. Dorchies, V. Malka, J. R. Marqués, G. Hamoniaux, P. Mora, and F. Amiranoff, “Temporal and Angular Resolution of the Ionization-Induced Refraction of a Short Laser Pulse in Helium Gas,” Phys. Rev. Lett. 82(3), 552 (1999).

    Article  ADS  Google Scholar 

  14. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pépin, F. Vidal, and H. P. Mercure, “Single-Shot Chirped-Pulse Spectral Interferometry Used to Measure the Femtosecond Ionization Dynamics of Air,” Opt. Lett. 25(8), 578 (2000).

    Article  ADS  Google Scholar 

  15. C. W. Siders, G. Rodriguez, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, “Measurement of Ultrafast Ionization Dynamics of Gases by Multipulse Interferometric Frequency-Resolved Optical Gating,” Phys. Rev. Lett. 87(26), 263002 (2001).

    Article  ADS  Google Scholar 

  16. P. Rambo, J. Schwarz, and J. C. Diels, “Interferometry with Two-Dimensional Spatial and High Temporal Resolution,” Opt. Commun. 197(1–3), 145 (2001).

    Article  ADS  Google Scholar 

  17. V. V. Bukin, N. S. Vorob’ev, S. V. Garnov, V. I. Konov, V. I. Lozovoi, A. A. Malyutin, M. Ya. Shchelev, and I. S. Yatskovskii, “Formation and Development Dynamics of Femtosecond Laser Microplasma in Gases,” Quantum Electron. 36(7), 638 (2006).

    Article  ADS  Google Scholar 

  18. V. V. Bukin, S. V. Garnov, A. A. Malyutin, and V. V. Strelkov, “Femtosecond Laser Optical Gas Breakdown Microplasma: The Ionisation and Postionisation Dynamics,” Quantum Electron. 37(10), 961 (2007).

    Article  ADS  Google Scholar 

  19. V. V. Bukin, S. V. Garnov, V. V. Strelkov, T. V. Shirokikh, and D. K. Sychev, “Spatio-Temporal Dynamics of Electron Density in Femtosecond Laser Microplasma of Gases,” Laser Phys. 19(6), 1300 (2009).

    Article  ADS  Google Scholar 

  20. V. A. Gribkov, V. Ya. Nikulin, and G. V. Sklizkov, “Double-Beam Interferometry Method for Investigating Axisymmetric Configurations of Dense Plasma,” Sov. J. Quantum Electron. 1(6) 606 (1972).

    Article  ADS  Google Scholar 

  21. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. C. Keyser, G. Schriever, M. Richardson, and E. Turcu, “Studies of High-Repetition-Rate Laser Plasma EUV Sources from Droplet Targets,” Appl. Phys. A. 77(2), 217 (2003).

    ADS  Google Scholar 

  23. M. S. Tillack, K. L. Sequoia, and Y. Tao, “Geometric Effects on EUV Emissions in Spherical and Planar Targets,” J. Phys.: Conf. Ser. 112(4), 042060 (2008).

    Article  ADS  Google Scholar 

  24. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1969).

    Google Scholar 

  25. M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hänsch, “Holographic Recording of Laser-Induced Plasma,” Opt. Lett. 29(7), 772 (2004).

    Article  ADS  Google Scholar 

  26. P. Bellanda, C. De Michelisa, and M. Mattiolia, “Holographic Interferometry of Laser Produced Plasmas Using Picosecond Pulses,” Opt. Commun. 3(1), 7 (1971).

    Article  ADS  Google Scholar 

  27. D. T. Attwood and L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasmas,” Appl. Phys. Lett. 24(9), 408 (1974).

    Article  ADS  Google Scholar 

  28. H. Azechi, S. Oda, K. Tanaka, T. Norimatsu, T. Sasaki, T. Yamanaka, and C. Yamanaka, “Measurement of Density Modification of Laser-Fusion Plasmas,” Phys. Rev. Lett. 39(18), 1144 (1977).

    Article  ADS  Google Scholar 

  29. D. T. Attwood, D. W. Sweeney, J. M. Auerbach, and P. H. Y. Lee, “Interferometric Confirmation of Radiation-Pressure Effects in Laser-Plasma Interactions,” Phys. Rev. Lett. 40(3), 184 (1978).

    Article  ADS  Google Scholar 

  30. D. T. Attwood, “Diagnostics for the Laser Fusion Program-Plasma Physics on the Scale of Microns and Picoseconds,” IEEE J. Quantum Electron. 14(12), 909 (1978).

    Article  ADS  Google Scholar 

  31. A. Raven and O. Willi, “Electron-Density Structures in Laser-Produced Plasmas at High Irradiances,” Phys. Rev. Lett. 43(4), 278 (1979).

    Article  ADS  Google Scholar 

  32. N. G. Vlasov, S. V. Korchazhkin, R. B. Matsonashvili, V. M. Petryakov, S. S. Sobolev, and S. F. Chalkin, “Picosecond Interferometry of Laser Plasma,” Opt. Spectrosc. 59(4), 564 (1985).

    ADS  Google Scholar 

  33. L. B. Da Silva, T. W. Barbee, Jr., R. Cauble, P. Celliers, D. Ciarlo, S. Libby, R. A. London, D. Matthews, S. Mrowka, J. C. Moreno, D. Ress, J. E. Trebes, A. S. Wan, and F. Weber, “Electron Density Measurements of High Density Plasmas Using Soft X-Ray Laser Interferometry,” Phys. Rev. Lett. 74(20), 3991 (1995).

    Article  ADS  Google Scholar 

  34. Y. L. Shao, T. Ditmire, J. W. G. Tisch, E. Springate, J. P. Marangos, and M. H. R. Hutchinson, “MultikeV Electron Generation in the Interaction of Intense Laser Pulses with Xe Clusters,” Phys. Rev. Lett. 77(16), 3343 (1996).

    Article  ADS  Google Scholar 

  35. G. S. Sarkisov, Yu. V. Bychenkov, V. T. Tikhonchuk, A. Maksimchuk, S. Y. Chen, R. Wagner, G. Mourou, and D. Umstadter, “Observation of the Plasma Channel Dynamics and Coulomb Explosion in the Interaction of a High Intensity Laser Pulse with He Gas Jet,” JETP Lett. 66(12), 787 (1997).

    Article  Google Scholar 

  36. T. Ditmire, E. T. Gumbrell, R. A. Smith, A. Djaoui, and M. H. R. Hutchinson, “Time-Resolved Study of Nonlocal Electron Heat Transport in High Temperature Plasmas,” Phys. Rev. Lett. 80(4), 720 (1998).

    Article  ADS  Google Scholar 

  37. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hügel, “Shadowgraphic and Interferometric Investigations on Nd:YAG Laser-Induced Vapor/ Plasma Plumes for Different Processing Wavelengths,” Appl. Phys. A. 69(7), S505 (1999).

    Article  ADS  Google Scholar 

  38. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” J. Opt. Soc. Am. 1982. Vol. 72(1), 156 (1982).

    Article  Google Scholar 

  39. K. A. Nugen, “Interferogram Analysis Using an Accurate Fully Automatic Algorithm,” Appl. Opt. 24(18), 3101 (1985).

    Article  ADS  Google Scholar 

  40. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, N. Y., 1977).

    Google Scholar 

  41. D. Bauer and P. Mulser, “Exact Field Ionization Rates in the Barrier-Suppression Regime from Numerical Time-Dependent Schrödinger-Equation Calculations,” Phys. Rev. A. 59(1), 569 (1999).

    Article  ADS  Google Scholar 

  42. A. A. Balakin and G. M. Fraiman, “Bremsstrahlung in a Strong Laser Field,” JETP. 93(4), 695 (2001).

    Article  ADS  Google Scholar 

  43. S. A. Maiorov, “Collisional Electron Heating by an Ultraintense Ultrashort Laser Pulse Focused in a Gas,” Plasma Phys. Rep. 27(4), 293 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Brantov, W. Rozmus, R. Sydora, C. E. Capjack, Yu. V. Bychenkov, and V. T. Tikhonchuk, “Enhanced Inverse Bremsstrahlung Heating Rates in a Strong Laser Field,” Phys. Plasmas. 10(8), 3385 (2003).

    Article  ADS  Google Scholar 

  45. G. Rascol, H. Bachau, V. T. Tikhonchuk, H. -J. Kull, and T. Ristow, “Quantum Calculations of Correlated Electron-Ion Collisions in a Strong Laser Field,” Phys. Plasmas. 13(10), 103108 (2006).

    Article  ADS  Google Scholar 

  46. R. A. Falk, G. Stefani, R. Camilloni, G. H. Dunn, R. A. Phaneuf, D. C. Gregory, and D. H. Crandall, “Measured Electron-Impact Ionization of Be-Like Ions: B+, C2+, N3+, and O4+,” Phys. Rev. A. 28(1), 91 (1983).

    Article  ADS  Google Scholar 

  47. D. L. Moores and H. Nussbaumer, “The Relevant Atomic Data,” Space Sci. Rev. 29(4), 379 (1981).

    Article  ADS  Google Scholar 

  48. D. H. Crandall, R. A. Phaneuf, B. E. Hasselquist, and D. C. Gregory, “Measured Cross Sections for Ionisation of C3+, N4+, and O5+ Ions with Contribution Due to Excitation-Autoionisation,” J. Phys. B: At. Mol. Opt. Phys. 12(7), L249 (1979).

    Article  ADS  Google Scholar 

  49. K. Rinn, D. C. Gregory, L. J. Wang, R. A. Phaneuf, and A. Müller, “Electron-Impact Ionization of O5+: Improved Measurements,” Phys. Rev. A. 36(2), 595 (1987).

    Article  ADS  Google Scholar 

  50. T. Kato, “Electron Impact Excitation of Nitrogen and Nitrogen-Like Ions: A Review of Available Data and Recommendations,” At. Data Nucl. Data Tables. 57, 181 (1994).

    Article  ADS  Google Scholar 

  51. C. E. Hudson and K. L. Bell, “Calculated Rate Coefficients for the Electron Impact Excitation of Singly Ionized Nitrogen,” Phys. Scripta. 71(3), 268 (2005).

    Article  ADS  Google Scholar 

  52. R. M. Frost, P. Awakowicz, H. P. Summers, and N. R. Badnell, “Calculated Cross Sections and Measured Rate Coefficients for Electron-Impact Excitation of Neutral and Singly Ionized Nitrogen,” J. Appl. Phys. 84(6), 2989 (1998).

    Article  ADS  Google Scholar 

  53. R. P. Stafford, K. L. Bell, and A. Hibbert, “Electron Impact Excitation of NIII: Collision Strengths and Maxwellian Averaged Rate Coefficients,” J. Phys. B: At. Mol. Opt. Phys. 25(24), 5449 (1992).

    Article  ADS  Google Scholar 

  54. C. A. Ramsbottom, K. A. Berrington, A. Hibbert, and K. L. Bell, “Electron Impact Excitation Rates for Transitions Involving the n=2 and n=3 Levels of Beryllium-Like NIV,” Phys. Scripta. 50(3), 246 (1994).

    Article  ADS  Google Scholar 

  55. D. C. Griffin, N. R. Badnell, and M. S. Pindzola, “Electron-Impact Excitation of C3+ and O5+: The Effects of Coupling to the Target Continuum States,” J. Phys. B: At. Mol. Opt. Phys. 33(5), 1013 (2000).

    Article  ADS  Google Scholar 

  56. R. U. Datla and H. -J. Kunze, “Electron-Impact Excitation and Recombination into Excited States of Lithiumlike Ions,” Phys. Rev. A. 37, 4616 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Garnov.

About this article

Cite this article

Bukin, V.V., Garnov, S.V., Malyutin, A.A. et al. Interferometric diagnostics of femtosecond laser microplasma in gases. Phys. Wave Phen. 20, 91–106 (2012). https://doi.org/10.3103/S1541308X12020021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X12020021

Keywords

Navigation