Physics of Wave Phenomena

, Volume 18, Issue 4, pp 313–317 | Cite as

Plasma oscillations in two-dimensional electron systems with a superstructure under Stark quantization conditions

  • S. Yu. GlazovEmail author
  • E. S. Kubrakova
  • N. E. Meshcheryakova
Plasma Physics


The effect of quantizing electric field on plasma oscillations of two-dimensional electron gas in a system with a periodic potential has been theoretically investigated. The coupled-plasmon spectrum ω(q) is calculated for high temperatures (Δ ≪ T, where Δ is the conduction miniband width and T is temperature in energy units). The calculations are based on the quantum theory of plasma oscillations in the random-phase approximation, with allowance for the umklapp processes.


Wave Phenomenon Periodic Potential Plasma Oscillation Umklapp Process Conduction Miniband 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Bykov, G. M. Gusev, Z. D. Kvon, V.M. Kudryashev, and V. G. Plyukhin, “Microwave Photoconductivity in a Two-Dimensional System with a Periodic Potential of Antipoint Contacts,” JETP Lett. 53(8), 427 (1991).ADSGoogle Scholar
  2. 2.
    G. M. Gusev, Z. D. Kvon, P.P. Wilms, V. B. Besman, N.V. Kovalenko, and N.G. Moshegov, “Shubnikov-de Haas Oscillations of a Two-Dimensional Electron Gas in Periodic Potential,” Sov.-Phys. Semicond. 26(3), 304 (1992).Google Scholar
  3. 3.
    S. Yu. Glazov and S.V. Kryuchkov, “Plasma Oscillations in Two-Dimensional Semiconductor Superstructures,” Semiconductors. 34(7), 807 (2000).CrossRefADSGoogle Scholar
  4. 4.
    S. Yu. Glazov and S.V. Kryuchkov, “Plasma Oscillations in Two-Dimensional Semiconductor Superstructures in the Presence of a High Electric Field,” Semiconductors. 35(4), 444 (2001).CrossRefADSGoogle Scholar
  5. 5.
    S. Yu. Glazov, “Collective and Monoparticle Excitation in Two-Dimension Electron Gas with Superstructure under Stark Quantization Conditions,” Vestnik Voronezh State Tech. Univ. 2(8), 102 (2006).Google Scholar
  6. 6.
    S.V. Kryuchkov and A. I. Shapovalov, “Possibility of the Propagation of an Electromagnetic Soliton in a Two-Dimensional Superlattice,” Phys. Solid State. 39(8), 1305 (1997).CrossRefADSGoogle Scholar
  7. 7.
    E. M. Epshtein, “Parametric Effect of Electromagnetic Wave on Plasma Oscillations in a 2D Electron Gas,” Fiz. Tverd. Tela. 33(5), 1431 (1991) [Sov. Phys. Solid State].Google Scholar
  8. 8.
    E. M. Epshtein and G. M. Shmelev, “Parametric Interaction of Two-Dimensional Electron Systems in a Strong Electromagnetic Field,” Phys. Status Solidi B. 160(1), 179 (1990).CrossRefADSGoogle Scholar
  9. 9.
    V. A. Yakovlev, “On the Theory of Conduction of Narrow-Band Electrons in Semiconductors in a Strong Electric Field,” Fiz. Tverd. Tela. 3(7), 1983 (1961) [Sov. Phys. Solid State].Google Scholar
  10. 10.
    E. M. Epshtein, “Plasma Oscillations in a Superlattice in the Presence of Strong Electric Field,” Fiz. Tverd. Tela. 21(6), 1719 (1979) [Sov. Phys. Solid State].Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • S. Yu. Glazov
    • 1
    Email author
  • E. S. Kubrakova
    • 1
  • N. E. Meshcheryakova
    • 2
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia
  2. 2.Volgograd Business InstituteVolgogradRussia

Personalised recommendations