Skip to main content
Log in

Physics of systems with motivation as an interdisciplinary field of science

  • Self-Organization and Chaos
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript


The basic characteristics distinguishing the natural and social systems from each other are discussed. The main approaches, prospects, and possibilities of constructing mathematical description for social systems are considered and the development of necessary appropriate concepts is analyzed. The focus is on the key concepts of physics of systems with motivation as an example of social systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. L. A. Mikeshina, Philosophy Science: Epistemology. Methodology. Culture, 2nd ed. (Izdat. Dom Mezhdunarod. Univ. v Moskve, Moscow, 2006) [in Russian].

    Google Scholar 

  2. Philosophy of Science, Ed. by T.P. Matyash, 2nd ed. (Feniks, Rostov-on-Don, 2007) [in Russian].

    Google Scholar 

  3. C. Castellano, S. Fortunato, and V. Loreto, “Statistical Physics of Social Dynamics,” Rev. Mod. Phys. (2009) (in press); arXiv:0710.3256 physics.soc-ph

  4. M. Buchanan, The Social Atom (Bloomsbury, N.Y., 2007).

  5. L. J. Savage, The Foundation of Statistics, 2nd ed. (Dover, N.Y., 1972).

  6. H. A. Simon, “A Behavioral Model of Rational Choice,” Quart. J. Econ. 69, 99 (1955).

    Article  Google Scholar 

  7. H. A. Simon, “Theories of Decision-Making in Economics and Behavioral Science,” Amer. Econ. Rev. 49, 253 (1959).

    Google Scholar 

  8. R. M. Cyert and J. G. March, A Behavioral Theory of the Firm, 2nd ed. (Prentice Hall, Englewood Cliffs, N.J., 1992).

    Google Scholar 

  9. J. Conlisk, “Bounded Rationality and Market Fluctuations,” J. Econ. Behavior Org. 29, 233 (1996).

    Article  Google Scholar 

  10. R. H. Day and M. Pingle, “Economizing Economizing,” in Handbook of Behavioral Economics, Ed. by R. Frantz, H. Singh, and J. Gerber (JAI Press, Greenwich, CT, 1991). Vol. 2B, p. 509.

    Google Scholar 

  11. H. Hayakawa, “Bounded Rationality, Social and Cultural Norms, and Interdependence via Reference Groups,” J. Econ. Behavior Org. 43, 1 (2000).

    Article  MathSciNet  Google Scholar 

  12. J. Rieskamp, “The Importance of Learning When Making Inferences,” Judgment Decision Making. 3, 261 (2008).

    Google Scholar 

  13. J. Rieskamp and P. E. Otto, “SSL: A Theory of How People Learn to Select Strategies,” J. Exp. Psychol.: General. 135, 207 (2006).

    Article  Google Scholar 

  14. T. Veblen, The Theory of Leisure Class (Macmillan, N.Y., 1899).

    Google Scholar 

  15. A. C. Pigou, “The Interdependence of Different Sources of Demand and Supply in a Market,” Economic J. 23, 19 (1913).

    Article  Google Scholar 

  16. D. R. Miller, “The Study of Social Relationships: Situations, Identity and Social Interaction,” in Psychology: A Study of a Science, Ed. by S. Kock (McGraw-Hill, N.Y., 1963). Vol. 5.

    Google Scholar 

  17. H. Hayakawa and Y. P. Venieris, “Consumer Interdependence via Reference Groups,” J. Polit. Econ. 85, 599 (1977).

    Article  Google Scholar 

  18. I. Lubashevsky, P. Wagner, and R. Mahnke, “Rational-Driver Approximation in Car-Following Theory,” Phys. Rev. E. 68, 056109 (2003).

    Google Scholar 

  19. D. Helbing, “Traffic and Related Self-Driven Many-Particle Systems,” Rev. Mod. Phys. 73, 1067 (2001).

    Article  ADS  Google Scholar 

  20. I. Lubashevsky, P. Wagner, and R. Mahnke, “A Bounded Rational Driver Model,” Eur. Phys. J. B. 32, 243 (2003).

    Article  ADS  Google Scholar 

  21. I. A. Lubashevsky, R. Mahnke, M. Hajimahmoodzadeh, and A. Katsnelson, “Long-Lived States of Oscillator Chains with Dynamical Traps,” Eur. Phys. J. B. 44, 63 (2005).

    Article  ADS  Google Scholar 

  22. I. Lubashevsky, M. Hajimahmoodzadeh, A. Katsnelson, and P. Wagner, “Noised Induced Phase Transition in an Oscillatory System with Dynamical Traps,” Eur. Phys. J. B. 36, 115 (2003).

    Article  ADS  Google Scholar 

  23. E. P. Todosiev, “The Action Point Model of the Driver-Vehicle System,” Tech. Rep. 202A-3 (Ph.D. Dissertation, Ohio State University, 1963).

  24. P. Wagner and I. Lubashevsky, “Empirical Basis for Car-Following Theory Development”; arXiv:condmat/0311192

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. A. Lubashevsky.

About this article

Cite this article

Lubashevsky, I.A., Plavinskaya, N.Y. Physics of systems with motivation as an interdisciplinary field of science. Phys. Wave Phen. 17, 132–138 (2009).

Download citation

  • Published:

  • Issue Date:

  • DOI:

PACS numbers