Skip to main content
Log in

Study of explosive boiling of transparent liquid on metal substrate exposed to nanosecond laser pulses

  • Interaction of Laser Radiation with Matter
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

Preliminary experimental investigation of photoacoustic pressure signals induced by nanosecond laser pulses in aluminum targets contacting a water layer was performed. It was shown that for some laser intensities the signal has a two-peak structure. The first peak is due to the thermoelastic effect, while the other results from the explosive evaporation. At low intensities, only the first peak is observed. At sufficiently high intensities, the signal recovers the one-peak shape and becomes narrower as compared with the two-peak shape because of the rapid increase in evaporation pressure and earlier beginning of the explosive evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Samokhin, “First-Order Phase Transitions Induced by Laser Radiation in Absorbing Condensed Matter,” in Effect of Laser Radiation on Absorbing Condensed Matter, Ed. by V. B. Fedorov (Nova Science Publ., Commack, 1990), p. 1.

    Google Scholar 

  2. N. V. Karlov, B. B. Krynetskii, V. A. Mishin, and A. A. Samokhin, “Metastability of Liquid Phase under Conditions of Developed Evaporation of Condensed Media,” JETP Lett. 19, 68 (1974).

    ADS  Google Scholar 

  3. W. Luthy, K. Affolter, and M. Fuhrer, “Laser Induced Surface Deformation on Silicon,” Phys. Lett. A. 75, 60 (1979).

    Article  ADS  Google Scholar 

  4. X. Xu and K. Song, “Explosive Phase Transformation in Excimer Laser Ablation,” Appl. Surf. Sci. 127–129, 111 (1998).

    Google Scholar 

  5. X. Xu and K. Song, “Interface Kinetics during Pulsed Laser Ablation,” Appl. Phys. A. 69, 869 (1999).

    Article  ADS  Google Scholar 

  6. V. Craciun, N. Bassim, R. K. Singh, D. Craciun, J. Hermann, and C. Boulmer-Leborgne, “Laser-Induced Explosive Boiling during Nanosecond Laser Ablation of Silicon,” Appl. Surf. Sci. 186, 288 (2002).

    Article  ADS  Google Scholar 

  7. A. Miotello and R. Kelly, “Laser-Induced Phase Explosion: New Physical Problems when a Condensed Phase Approaches the Thermodynamic Critical Temperature,” Appl. Phys. A. 69, S67 (1999).

    Article  ADS  Google Scholar 

  8. D. Kim and C. Grigoropoulos, “Pulsed Laser-Induced Ablation of Absorbing Liquids and Acoustic-Transient Generation,” Appl. Phys. A. 67, 169 (1998).

    Article  ADS  Google Scholar 

  9. H. Park, D. Kim, C. Grigoropoulos, and A. Tam, “Pressure Generation and Measurement in the Rapid Vaporization of Water on a Pulsed-Laser-Heated Surface,” J. Appl. Phys. 80, 4072 (1996).

    Article  ADS  Google Scholar 

  10. T. Y. Choi and C. Grigoropoulos, “Plasma and Ablation Dynamics in Ultrafast Laser Processing of Crystalline Silicon,” J. Appl. Phys. 92, 4918 (2002).

    Article  ADS  Google Scholar 

  11. Y. Dou, L. V. Zhigilei, N. Winograd, and B. J. Garrison, “Explosive Boiling of Water Films Adjasent to Heated Surfaces: a Microscopic Description,” J. Chem. Phys. A. 105, 2748 (2001).

    Article  Google Scholar 

  12. B. Garrison, T. Itina, and L. Zhigilei, “Limit of Overheating and the Threshold Behavior in Laser Ablation,” Phys. Rev. E. 68, 041501 (2003).

    Google Scholar 

  13. R. Kelly, A. Miotello, A. Mele, A. G. Guidoni, J. W. Hastie, P. K. Schenck, and H. Okabe, “Gas-Dynamic Effects in the Laser-Pulse Sputtering of AlN: Is There Evidence for Phase Explosion?” Appl. Surf. Sci. 133, 251 (1998).

    Article  ADS  Google Scholar 

  14. Z. Kantor, Z. Toth, T. Szorenyi, and A. L. Toth, “Deposition of Micrometer-Sized Tungsten Patterns by Laser Transfer Technique,” Appl. Phys. Lett. 64, 3506 (1994).

    Article  ADS  Google Scholar 

  15. N. M. Bulgakova and A. V. Bulgakov, “Pulsed Laser Ablation of Solids: Transition from Normal Vaporization to Phase Explosion,” Appl. Phys. A. 73, 199 (2001).

    Article  ADS  Google Scholar 

  16. V. N. Alekseev, S. V. Egerev, K. A. Naugol’nykh, O. B. Ovchinnikov, A. E. Pashin, O. V. Puchenkov, and V. N. Uchastnov, “Acoustic Diagnostics of Transient Processes of Interaction of Optical Radiation with a Strongly Absorbing Dielectric Liquid,” Sov. Phys.-Acoust. 33, 561 (1987).

    Google Scholar 

  17. A. A. Karabutov, A. P. Kubyshkin, V. Ya. Panchenko, and N. B. Podymova, “Dynamic Shift of the Boiling Point of Metals at Laser Exposure,” Quantum Electron. 25, 789 (1995).

    Article  Google Scholar 

  18. G. Paltauf and P. E. Dyer, “Photomechanical Processes and Effects in Ablation,” Chem. Rev. 103, 487 (2003).

    Article  Google Scholar 

  19. S. M. Nikiforov, S. S. Alimpiev, M. W. George, B. G. Sartakov, and Y. O. Simanovsky, “Anomalous Reflection of Water Surface during Laser Ablation,” Opt. Commun. 182, 17 (2000).

    Article  ADS  Google Scholar 

  20. S. N. Andreev, S. V. Orlov, and A. A. Samokhin, “Simulation of Pulsed-Laser-Induced Explosive Boiling,” Phys. Wave Phenom. 15(2), 67 (2007).

    Article  Google Scholar 

  21. A. A. Samokhin, S. M. Klimentov, and P. A. Pivovarov, “Acoustic Monitoring of Explosive Boiling of Transparent Liquid on Absorbing Target Irradiated by Pair of Nanosecond Laser Pulses”, Quantum Electron. 37 (2007) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Andreev.

About this article

Cite this article

Andreev, S.N., Vovchenko, V.I. & Samokhin, A.A. Study of explosive boiling of transparent liquid on metal substrate exposed to nanosecond laser pulses. Phys. Wave Phen. 15, 182–185 (2007). https://doi.org/10.3103/S1541308X07030041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X07030041

PACS numbers

Navigation