Skip to main content
Log in

Orientational ordering of protein particles with asymmetric introductions of ferritin in a magnetic field

  • Optical Spectroscopy
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The mechanism of orientational ordering of protein particles in an inhomogeneous magnetic field, proposed by the authors in Phys. Wave Phenom. 13(1), 1 (2005), was extended to ferritin inclusions in such particles, taking into account the probable appearance of superantiferromagnetic susceptibility properties. Degrees of orientational ordering, ordered state formation and decay times achievable in bioparticle suspensions were estimated for a realistic model of the resistance to motion of elliptic particles in a viscous fluid. Biotechnological applications of the effect are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. G. Lyakhov, T. D. Schneider, G. A. Lyakhov, and N. V. Suyasov, “Orientational Ordering of Protein Micro- and Nanoparticles in a Nonuniform Magnetic Field,” Phys. Wave Phenom. 13(1), 1 (2005).

    Google Scholar 

  2. W. Wernsdorfer and R. Sessoli, “Quantum Phase Interference and Parity Effects in Magnetic Molecular Clusters,” Science. 284, 133 (1999).

    Article  ADS  Google Scholar 

  3. A. V. Simakin, V. V. Voronov, N.A. Kirichenko, and G. A. Shafeev, “Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment,” Appl. Phys. A. 79, 1127 (2004).

    Article  ADS  Google Scholar 

  4. N. F. Bunkin and F. V. Bunkin, “Screening of Strongly Charged Macroparticles in Liquid Electrolyte Solutions,” JETP. 96(4), 730 (2003).

    Article  Google Scholar 

  5. Y. Gossuin, R. N. Muller, and P. Gillis, “Relaxation Induced by Ferritin: a Better Understanding for an Improved MRI Iron Quantification,” NMR Biomed. 17(7), 427 (2004).

    Google Scholar 

  6. J. M. Ziman, Principles of the Theory of Solids State (Cambridge Univ. Press, Cambridge, 1972).

    Google Scholar 

  7. F. Haurowitz, The Chemistry and Function of Proteins (Academic Press, N.Y.-London, 1963).

    Google Scholar 

  8. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon Press, N.Y., 1984).

    Google Scholar 

  9. J. Happel and H. Brenner, Low Reynolds Number Hydrodynemics (Prentice-Hall, Englewood Cliffs, N.J., 1965).

    Google Scholar 

  10. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, “Relevance of Magnetic Moment Distribution and Scaling Law Methods to Study the Magnetic Behavior of Antiferromagnetic Nanoparticles: Application to Ferritin,” Phys. Rev. B. 71, 184408 (2005).

    Google Scholar 

  11. E. R. Bauminger and I. Nowik, “Magnetism in Plant and Mammalian Ferritin,” Hyperfine Interact. 50, 489 (1989).

    Article  Google Scholar 

  12. C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, “Magnetic Hysteresis and Superantiferromagnetism in Ferritin Nanoparticles,” J. Magn. Magn. Mater. 241, 430 (2002).

    Article  ADS  Google Scholar 

  13. L. Néel, C. R. Acad. Sci. (Paris) 254, 598 (1962).

    Google Scholar 

  14. J. D. Jackson, Classical Electrodynamics (John Wiley & Suns Inc., N.Y., London, 1962).

    Google Scholar 

  15. Tables of Physical Quantities (Handbook), Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  16. H. Lamb, Hydrodynamics (Dover, N.Y., 1945).

    Google Scholar 

  17. A. T. Chwang and T. Y. Wu, “Hydromechanics of Low-Reynolds-Number Flow. Part 1. Rotation of Axisymmetric Prolate Bodies,” J. Fluid Mech. 63, 607 (1974).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. M. K. Vuks, Electrical and Optical Properties of Molecules and Condensed Media (Leningrad State Univ., Leningrad, 1984) [in Russian].

    Google Scholar 

  19. P. Debye and G. Zakk, Theory of the Electrical Properties of Molecules (Gostekhizdat, Moscow, 1936) [in Russian].

    Google Scholar 

  20. K. Terpe, “Overview of Bacterial Expression Systems for Heterologous Protein Production: from Molecular and Biochemical Fundamentals to Commercial Systems,” Appl. Microbiol. Biotechnol. 72(2), 211 (2006).

    Article  Google Scholar 

  21. D. Schüler, “Formation of Magnetosomes in Magnetotactic Bacteria,” J. Molec. Microbiol. Biotechnol. 1(1), 79 (1999).

    Google Scholar 

  22. D. Schüler, “The Biomineralization of Magnetosomes in Magnetospirillum Gryphiswaldense,” Int. Microbiol. 5, 209 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lyakhov, I.G., Lyakhov, G.A. & Suyazov, N.V. Orientational ordering of protein particles with asymmetric introductions of ferritin in a magnetic field. Phys. Wave Phen. 15, 95–105 (2007). https://doi.org/10.3103/S1541308X07020033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X07020033

PACS numbers

Navigation