Skip to main content
Log in

The Impact of Some Factors of Thermal Protection Material Degradation on the Discharge Coefficient of the Recessed Nozzle

  • AIRCRAFT AND ROCKET DESIGN AND DEVELIOPMENT
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Computational fluid dynamics was employed to study the effect of temperature and composition of injected thermal protection degradation products on the discharge coefficient of the recessed nozzle. The analysis was carried out together with simulation of blowing intensity of degradation products into the main flow with variation of the heat flux along the nozzle entrance. The behavior of flow parameters over the nozzle entrance region and variation of the discharge coefficient depending on the parameters of injected gas were described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

REFERENCES

  1. Gubertov, A.M., Mironov, V.V., Borisov, D.M., et al., Gazodinamicheskie i teplofizicheskie processy v raketnykh dvigatelyakh tverdogo topliva (Gas Dynamic and Thermophysical Processes in Solid Rocket Engines), Koroteev, A.S., Ed., Moscow: Mashinostroenie, 2004.

  2. Polezhaev, Yu.V. and Yurevich, F.B., Teplovaya zashchita (Thermal Protection), Lykov, A.V, Ed., Moscow: Energiya, 1976.

  3. Kirillova, A.N. and Sabirzyanov, A.N., Influence of Injection of the Thermal Shield Decomposition Products on the Flow Coefficient of a Recessed Nozzle Depending on the Inlet Section Shape, Inzhenerno-Fizichecheskii Zhurnal, 2022, vol. 95, no. 5, pp. 1266–1276 [Journal of Engineering Physics and Thermophysics (Engl. Transl.), 2022, vol. 95, no. 4, pp. 1248–1258].

    Google Scholar 

  4. Kirillova, A.N., Sabirzyanov, A.N., and Kuz’min, V.V., Various Factors Influence of Heat-Shielding Material Decomposition on Flow Rate Coefficient of a Recessed Nozzle, Proc. of the Int. Sc. and Tech. Engine Conference, 2021, Samara, pp. 38–39.

  5. Kirillova, A.N. and Sabirzyanov, A.N., Effect of the Injection of Heat Shield Degradation Products on the Discharge Coefficient of the Submerged Nozzle, Izv. Vuz. Av. Tekhnika, 2021, vol. 64, no. 2, pp. 129–135 [Russian Aeronautics (Engl. Transl.), vol. 64, no. 2, pp. 314–321].

    Google Scholar 

  6. Gribanov, V.M, Slobodchikov, S.S., Potapenko, A.I., and Ul’yanenkov. R.V., Computational-Experimental Method for Estimation of Energy Expenditures for Physical-Chemical Conversion in Polymer Materials, Trudy VNIIEM. Voprosy Elektromekhaniki, 2012, vol. 130, no. 5, pp. 51–57.

  7. Shishkov, A.A., Panin, S.D., and Rumyantsev, B.V., Rabochie processy v raketnykh dvigatelyakh tverdogo topliva: Spravochnik (Operating Processes in Solid Rocket Engines: Handbook), Moscow: Mashinostroenie, 1989.rnal of Fluid Mechanics, 1966, vol. 25, pp. 593–620.

  8. Sokolovskii, M.I. and Luzenin, A.Yu., Konstruktsiya raketnykh dvigatelei tverdogo topliva (Design of Solid Rocket Engines), in 4 vols, Perm: Izdatel’stvo PNIPU, 2019.

  9. Gross, M.L., Two-Dimensional Modeling of AP/HTPB Utilizing a Vorticity Formulation and One-Dimensional Modeling of AP and AND, Brigham Young University, 2007.

  10. Tanner, M.W., Multidimensional Modeling of Solid Propellant Burning Rates and Aluminum Agglomeration and One-Dimensional Modeling of RDX/GAP and AP/HTPB, Brigham Young University, 2008

  11. Menter, F.R., Two-Equation Eddy-Viscosity Turbulent Models for Engineering Applications, AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.

  12. Sabirzyanov, A.N., Kirillova, A.N., and Khamatnurova, Ch.B., The Effect of Entrance Geometry of Submerged Nozzle on the Discharge Coefficient, Vestnik MAI, 2020, vol. 27, no. 2, pp. 140–148.

    Google Scholar 

  13. Sabirzyanov, A.N., Glazunov, A.I., Kirillova, A.N., and Titov, K.S., Simulation of a Rocket Engine Nozzle Discharge Coefficient, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 2, pp. 105–111 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 2, pp. 257–264].

    Google Scholar 

  14. Sabirzyanov, A.N. and Kirillova, A.N., Complex Effect of Recess Depth in Nozzle Design on the Discharge Coefficient, Vestnik Kontserna VKO “Almaz–Antei”, 2018, no. 1, pp. 43–50.

    Google Scholar 

  15. Fakhrutdinov, I.Kh. and Kotel’nikov, A.V., Konstruktsiya i proektirovanie raketnykh dvigatelei tverdogo topliva (Structure and Design of the Solid Rocket Engines), Moscow: Mashinostroenie, 1987.

  16. Lipanov, A.M. and Aliev, A.V., Proektirovanie raketnykh dvigatelei tverdogo topliva (Design of Solid Rocket Engines), Moscow: Mashinostroenie, 1995.

  17. Koval’nogov, N.N. and Khakhaleva, L.V., Turbulent Flow and Friction Resistance in a Perforated Pipe with Damping Cavities, Izv. Vuz. Av. Tekhnika, 2002, vol. 45, no. 3, pp. 19–21 [Russian Aeronautics (Engl. Transl.), 2002, vol. 45, no. 3, pp. 25–29].

    Google Scholar 

  18. Bondarenko, A.A., Kovrizhnykh, E.N., and Koval’nogov, N.N., Laminarization of a Boundary Layer on the Perforated Surface with Blind Damping Cavities in an Accelerating Flow, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 1, pp. 41–44 [Russian Aeronautics (Engl. Transl.), 2011, vol. 54, no. 1, pp. 56–61].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sabirzyanov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2023, No. 3, pp. 85 – 92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabirzyanov, A.N., Shaidullin, R.A. The Impact of Some Factors of Thermal Protection Material Degradation on the Discharge Coefficient of the Recessed Nozzle. Russ. Aeronaut. 66, 510–519 (2023). https://doi.org/10.3103/S1068799823030121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799823030121

Keywords

Navigation