Skip to main content
Log in

Enhancement of Wall Cooling by Single-Cavity Diffuser-Type Dimples in Turbulent Flow

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Experimental data on average heat transfer and flow resistance were obtained in a rectangular channel with arrays of single-cavity diffuser-type dimples on the channel wall. Simulation of flows past arrays of single-cavity diffuser-type dimples was performed for different inclination angles of dimples. Heat transfer experiments are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Leont’ev, A.I., Alekseenko, S.V., Volchkov, E.P., et al., Vikhrevye tekhnologii dlya energetiki (Vortical Technologies for Power Engineering), Moscow: Izd. Dom MEI, 2017.

    Google Scholar 

  2. Isaev, S.A., Leont’ev, A.I., and Shchelchkov, A.V., Heat Transfer Enhancement by Oval Dimples, Tez. dokl. i soobshchenii 15go Minskogo mezhdunarodnogo foruma po teplo- i massoobmenu (Theses of Reports of the 15th Minsk Int. Forum on Heat and Mass Transfer), Minsk: A.V. Lykov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, 2016, vol. 1, pp. 102–105.

  3. Gachechiladze, I.A., Kiknadze, G.I., Krasnov, Yu.K., et al., Heat Transfer in the Presence of Self-Organizing Tornado-Like Structures, Materialy Minskogo mezhdunarodnogo foruma po teplo- i massoobmenu. Problemnye doklady. Sektsiya 1–2 (Proc. of the Minsk Int. Forum on Heat and Mass Transfer: Problem Statement Papers. Section 1–2), Minsk: Academy of Sciences of BSSR, 1988, pp. 83–125.

  4. Kesarev, V.S. and Kozlov, A.P., Flow Structure and Heat Transfer in Turbulized Air Flows Past Spherical Cavities, Vestnik MGTU. Seriya Mashinostroenie, 1993, issue 1, pp. 106–115.

    Google Scholar 

  5. Shchukin, A.V., Il’inkov, A.V., Takmovtsev, V.V., Il’inkova, T.A., and Khabibullin, I.I., Teplofizika rabochikh protsessov v okhlazhdaemykh lopatkakh gazovykh turbin (Thermophysics of Work Processes in Cooled Blades of Gas Turbines), Kazan: Izd. KNITU-KAI, 2020.

    Google Scholar 

  6. Gortyshov, Yu.F., Popov, I.A., Olimpiev, V.V., Shchelchkov, A.V., and Kas’kov, S.I., Teplogidravlicheskaya effektivnost' perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena (Thermal-Hydraulic Efficiency of the Promising Methods of Intensification of Heat Transfer in Channels of Heat Transfer Equipment. Enhancement of Heat Transfer), Gortyshov, Yu.F., Ed., Kazan: Isd. KNITU-KAI, 2009.

    Google Scholar 

  7. Shchukin, A.V., Takmovtsev, V.V., Il’inkov, A.V., Erzikov, A.M., and Zaripov, I.Sh., RU Patent 2676837, Byul. Izobr., 2019, no. 2.

  8. Il’inkov, A.V., Shchukin, A.V., Takmovtsev, V.V., Erzikov, A.M., and Zaripov, I.Sh., RU Patent 2701661, Byul. Izobr., 2019, no. 28.

  9. Il’inkov, A.A., Takmovtsev, V.V., Shchukin, A.V., Khabibullin, I.I., and Zaripov, I.Sh., Vortex Structure Intensity in Diffuser Dimples, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 75–80 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 586–592].

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (contract no. 075-03-2020-051/3, state registration number AAAA-A20-120102190039-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchukin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2022, No. 2, pp. 142 - 145.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inkov, A.V., Shchukin, A.V., Takmovtsev, V.V. et al. Enhancement of Wall Cooling by Single-Cavity Diffuser-Type Dimples in Turbulent Flow. Russ. Aeronaut. 65, 380–385 (2022). https://doi.org/10.3103/S1068799822020167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799822020167

Keywords

Navigation