Skip to main content
Log in

The Effect of Flight Overload on the Intra-Chamber Process in a Solid-Propellant Rocket Engine

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The dynamics of the intra-chamber processes of a solid-propellant rocket engine of the second stage of a cruise missile is investigated, taking into account the distributed space-three-dimensional and time-varying flight overloads by setting up a computational experiment. The results of numerical calculations are given without taking into account and taking into account the effect of flight overloads. It has been established that the impact of significant in-flight overloads affects the intra-chamber process in a solid-propellant rocket engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Sorkin, R.E., Gas Dynamics and Thermodynamics of Solid-Propellant Rockets, Israel Program for Scientific Translation, 1969.

  2. Alemasov, V.E., Dregalin, A.F., and Tishin, A.P., Teoriya raketnykh dvigatelei (Theory of Rocket Engines), Moscow: Mashinostroenie, 1980.

    Google Scholar 

  3. Lipanov, A.M., Bobryshev, V.P., Aliev, A.V., et al., Chislennyi eksperiment v teorii RDTT (Numerical Experiment in Solid Propellant Rocket Engine Theory), Ekaterinburg: Nauka, 1994.

    Google Scholar 

  4. Davydov, Yu.M. and Egorov, M.Yu., Chislennoe modelirovanie nestatsionarnykh perekhodnykh protsessov v aktivnykh i reaktivnykh dvigatelyakh (Numerical Simulation of Nonstationary Transient Processes in Active and Reactive Engines), Moscow: NAPN RF, 1999.

    Google Scholar 

  5. Aliev, A.V., Amarantov, G.N., Akhmadeev, V.F., et al., Vnutrennyaya ballistika RDTT (Internal Ballistics of Solid Propellant Rocket Engines), A.M. Lipanov, A.M., Milekhin, Yu.M., Eds., Moscow: Mashinostroenie, 2007.

    Google Scholar 

  6. Kuz’min, V.A., Maratkanova, E.I., Zagrai, I.A., and Rukavishnikova, R.V., Simulation of Thermal Radiation Emitted by Heterogeneous Combustion Products in the Combustion Chamber of a Model Engine, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 1, pp. 92–97 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 100–106].

    Google Scholar 

  7. Kraev, V.M. and Myakochin, A.S., Analysis of Hydrodynamic Unsteady Turbulent Flow Structure in an Aircraft Power Plant Channels, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 75–81 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 243–250].

    Google Scholar 

  8. Volkov, K.N., Emel’yanov, V.N., Teterina, I.V., and Yakovchuk, M.S., Gazovye techeniya v soplakh energoustanovok (Gas Flows in Nozzles of Power Plants), Moscow: Fizmatlit, 2017.

    Google Scholar 

  9. Milekhin, Yu.M., Burskii, G.V., Lavrov, G.S., Popov, V.S., and Sadovnichii, D.N., Energetika i vnutrennyaya ballistika raketnykh dvigatelei na tverdom toplive (Power Engineering and Internal Ballistics of Solid-Fuel Rocket Engines), Moscow: Nauka, 2018.

    Google Scholar 

  10. Zhukov, V.P., Borovik, I.N., and Strokach, E.A., Numerical Study of the Influence of Turbulent Diffusion Coefficients and Turbulent Prandtl Number on the Reactive Flow Simulation in a Combustor, Izv. Vuz. Av. Tekhnika, 2020, vol. 63, no. 4, pp.139–145 [Russian Aeronautics (Engl. Transl.), vol. 63, no. 4, pp. 713–720].

    Google Scholar 

  11. Davydov, Yu.M., Davydova, I.M., and Egorov, M.Yu., Influence of the Flight Overload on Working Process Instability in the Solid Propellant Rocket Engine Combustion Chamber, Doklady Akademii Nauk, 2004, vol. 398, no. 2, pp. 194–197.

    Google Scholar 

  12. Amarantov, G.N., Egorov, M.Yu., Egorov, S.M., Egorov, D.M., and Nekrasov, V.I., Numerical Simulation of Intrachamber Processes at the Output of the Mode of Operation of a Solid Propellant Rocket Engine, Vyshislitel’naya Mekhanika Sploshnykh Sred, 2010, vol. 3, no. 3, pp. 5–17.

    Google Scholar 

  13. Egorov, M.Yu., Egorov, S.M., and Egorov, D.M., Numerical Study of Transient Intrachamber Processes When Reaching the SPRE Operational Conditions, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 3, pp. 41–45 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 3, pp. 303–311].

    Google Scholar 

  14. Rakhmatulin, Kh.A., Fundamentals of Gas Dynamics of Interpenetrating Continua Motion, Prikladnaya Matematika i Mekhanika, 1956, vol. 20, no. 2, pp. 184–195.

    MathSciNet  Google Scholar 

  15. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, Parts 1–2, 1987.

    Google Scholar 

  16. Davydov, Yu.M., Particle-in-Cell Method, in Matematicheskii entsiklopedicheskii slovar’ (Mathematical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1982, vol. 3, pp. 125–129.

    Google Scholar 

  17. Davydov, Yu.M., Davydova, I.M., and Egorov, M.Yu., Instability of Working Process in a Two-Chamber Solid Propellant Rocket Engine, Doklady Akademii Nauk, 2011, vol. 439, no. 2, pp. 188–191 [Doklady Physics (Engl. Transl.), vol. 56, no. 7, pp. 403–406].

    Google Scholar 

  18. Egorov, M.Yu. and Egorov, D.M., Numerical Study of Dynamics at Nozzleless Solid Propellant Rocket Engine Actuation, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 1, pp. 51–54 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 1, pp. 68–72].

    Google Scholar 

  19. Egorov, M.Yu., Numerical Research of Intra-Chamber Processes Dynamics during Startup of a Special Solid Propellant Engine, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 104–111 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 4, pp. 591–599].

    Google Scholar 

  20. Egorov, M.Yu., Numerical Research of Intra-Chamber Transient Processes Dynamics during Starting Operation of the Solid Propellant Engine with Special Arrangement, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 2, pp. 59–67 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 2, pp. 234–243].

    Google Scholar 

  21. Stakhnov, A.A., Linux, Saint Petersburg: BKhV-Petersburg, 2004.

    Google Scholar 

  22. Dirk, L., C/C++ Die Referenz, Markt + Technik Verlag, 2006.

    Google Scholar 

  23. Kulakov, K.A., Methods and Algorithms of Open Computing Language (OpenCL) Parallel Programming, URL: https://cs.petrsu.ru/~kulakov/courses/parallel/lect/opencl.pdf.

  24. Atmosphere Density at Different Altitudes, URL: https://tehtab.ru/Guide/GuidePhysics/GuidePhysicsDensity/.

  25. Ivanov, S.A., Gas Dynamics, URL: http://physics.samgtu.ru/sites/physics.samgtu.ru/files/styles/ivanov_verstka.pdf.

  26. Kurenkov, V.I., Models for Estimation of Loads Acting on Aircraft, URL: https://studfile.net/preview/7439596/.

Download references

ACKNOWLEDGEMENTS

The work was supported by the Russian Foundation for Basic Research and the Perm Territory Administration (Project no. 19-41-590006-r-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Egorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2022, No. 2, pp. 132 - 141.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, M.Y. The Effect of Flight Overload on the Intra-Chamber Process in a Solid-Propellant Rocket Engine. Russ. Aeronaut. 65, 368–379 (2022). https://doi.org/10.3103/S1068799822020155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799822020155

Keywords

Navigation