Skip to main content
Log in

Regularities of the Heat Resistance Formation of Thermal Barrier Coatings Counting Technological Heredity

  • AIRCRAFT PRODUCTION TECHNOLOGY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Calculations of the stress state of a two-layer system of a thermal barrier coating are performed depending on the thermal loading mode and the presence or absence of a temperature gradient over the sample cross section during the thermal resistance test. The calculations took into account changes in the state of the structure of the coating ceramic layer and the sublayer. A numerical model of the thermal barrier coating performance is developed depending on the thickness ratio of the ceramic layer and the sublayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Il’inkova, T.A. and Tagirov, A.T., Simulation of the Sintering Process of a Ceramic Layer of a Heat-Protective Coating, Vestnik KNITU, 2014, no. 9, pp. 31–33.

    Google Scholar 

  2. Il’inkova, T.A. and Tagirov, A.T., Sintering of a Ceramic Layer of a Heat-Protective Coating under Cyclic Thermal Exposure, Vestnik KNITU, 2014, no. 9, pp. 37–40.

    Google Scholar 

  3. Il’inkova, T.A. and Tagirov, A.T., Oxidation of Sublayer of Plasma Spray Thermal Barrier Coatings under High Temperature, Uprochnyayushchie Tekhnologii i Pokrytiya, 2015, no. 2, pp. 3–9.

    Google Scholar 

  4. Pawlowski, L., The Science and Engineering of Thermal Spray Coating, New York: John Wiley and Sons, 1995.

    Google Scholar 

  5. Berndt, C. and Herman, H., Failure during Thermal Cycling of Plasma-Sprayed Thermal Barrier Coatings, Thin Solid Films, 1983, vol. 108, issue 4, pp. 427–437.

    Article  Google Scholar 

  6. Voyer, J., Gitzhofer, F., and Boulos, M.I., Study of the Performance of TBC under Thermal Cycling Conditions Using an Acoustic Emission Rig, Journal of Thermal Spray Technology, 1998, vol. 7, issue 2, article no. 181.

    Article  Google Scholar 

  7. Miller, R.A., Current Status of Thermal Barrier Coatings—an Overview, Surface and Coatings Technology, 1986, vol. 30, issue 1, pp. 1–11.

    Article  Google Scholar 

  8. Nakamura, T., Qian, G., and Berndt, C., Effects of Pores on Mechanical Properties of Plasma Sprayed Ceramic Coatings, Journal of American Ceramic Society, 2000, vol. 83, pp. 578–584.

    Article  Google Scholar 

  9. Greving, D.J., Rybicki, E.F., and Shadley, J.R., Through-Thickness Residual Stress Evaluations for Several Industrial Thermal Spray Coatings Using a Modified Layer-Removal Method, Journal of Thermal Spray Technology, 1994, vol. 3, issue 4, article no. 379.

    Article  Google Scholar 

  10. Greving, D.J., et al., Effects of Coating Thickness and Residual Stresses on the Bond Strength of ASTM C633-79 Thermal Spray Coating Test Specimens, Journal of Thermal Spray Technology, 1994, vol. 3, issue 4, article no. 371.

    Article  Google Scholar 

  11. Matejicek, J., Sampath, S., and Dubsky, J., X-Ray Residual Stress Measurement in Metallic and Ceramic Plasma Sprayed Coatings, Journal of Thermal Spray Technology, 1998, vol. 7, issue 4, pp. 489–496.

    Article  Google Scholar 

  12. Berndt, C. and Lin, C.K., Measurement of Adhesion for Thermally Sprayed Materials, Journal of Adgesion Science Technology, 1993, vol. 7, pp.1235–1264.

    Google Scholar 

  13. Berndt, C., Senturk, U., Lima, R.S., and Lima, C.R.C., Deformation of Plasma Sprayed TBC, Journal of Engineering for Gas Turbines and Power, 2000, vol. 122, pp. 387–392.

    Article  Google Scholar 

  14. Leigh, S., Lin, C., and Berndt, C., Elastic Response of Thermal Spray Deposits under Indentation Tests, Journal of the American Ceramic Society, 1997, vol. 80, issue 8, pp. 2093–2099.

    Article  Google Scholar 

  15. Trushin, V.A., Tarasov, F.F., and Trushin, O.V., Temperatures and Thermal Stresses in Thermal Barrier Coating, Izv. Vuz. Av. Tekhnika, 2004, vol. 47, no. 4, pp. 32–34 [Russian Aeronautics (Engl. Transl.), vol. 47, no. 4, pp. 46–50].

    Google Scholar 

  16. Trushin, V.A. and Trushin, O.V., Thermal Barrier Coating of a Turbine Blade in the GTE Transient Operating Conditions, Izv. Vuz. Av. Tekhnika, 2006, vol. 49, no. 4, pp. 50–52 [Russian Aeronautics (Engl. Transl.), vol. 49, no. 4, pp. 46–50].

    Google Scholar 

  17. Pozdnyakova, I., Bruno, G., Efremov, A.M., Clausen, B., and Hughes, D.J., Stress-Dependent Elastic Properties of Porous Microcracked Ceramics, Advanced Engineering Materials, 2009, vol. 11, pp. 1023–1029.

    Google Scholar 

  18. Il’inkova, T.A., Valiev, R.R., Tagirov, A.T., On Duration of Thermo-Protective Plasma Coatings Life under Thermal Loading, Vestnik KGTU im. A.N. Tupoleva, 2010, no. 2, pp. 24–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Il’inkova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 4, pp. 154 - 161.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inkova, T.A., Tagirov, A.T. Regularities of the Heat Resistance Formation of Thermal Barrier Coatings Counting Technological Heredity. Russ. Aeronaut. 64, 756–763 (2021). https://doi.org/10.3103/S106879982104022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106879982104022X

Keywords

Navigation