Skip to main content
Log in

Spreading Features of SPT Jets in Vacuum Chamber

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Processes of accelerated ions attenuation due to the resonance charge exchange and elastic scattering processes are examined in the paper. In addition, we study the process of generation for charge exchange and elastic scattering ions. We estimated numerically the attenuation process of accelerated ions and of secondary particles flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Gorshkov, O.A., Muravlev, V.A., and Shagaida, A.A., Khollovskie i ionnye plazmennye dvigateli dlya kosmicheskikh apparatov (Hall and Ion Plasma Thrusters for the Spacecraft), Moscow: Mashnostroenie, 2008.

    Google Scholar 

  2. Kozubskii, K.N., Murashko, V.M., and Rylov, Yu.P., SPT Operates in Space, Fizika Plazmy, 2003, vol. 29, no. 3, pp. 277–292.

    Google Scholar 

  3. Kim, V.P., Nadiradze, A.B., Popov, G.A., Khodnenko, V.P., and Shishkin, G.G., Problems of EPT application at the Spacecrafts, in Model’ kosmosa (Space Model), Moscow: Knizhnyi dom Universitet, 2007, vol. 2: Vozdeistvie kosmicheskoi sredy na materialy i oborudovanie kosmicheskikh apparatov (Space Environment Impact to the SC Materials and Equipment), Novikov, L.S., Ed., pp. 615–659.

    Google Scholar 

  4. Korsun, A.G., Tverdokhlebova, E.M., Novikov, G.I., Markelova, T.S., Astashkin, A.A., and Nadiradze, A.B., How to Protect Spacecrafts Against Electrical and Physical Impacts, in Sistemnaya ballistika i effektivnost' kosmicheskikh sistem distantsionnogo zondirovaniya Zemli (System Ballistic and Efficiency of Space Systems for the Earth Remote Probing), Raikunov, G.G., Ed., Moscow: ZAO NII ENTsITEKh, 2012.

    Google Scholar 

  5. Khodnenko, V.P., Impact of Stationary Plasma Thrusters on “Electro-M” and “Electro-M1” Satellites Operability, Voprosy Elektromekhaniki. Trudy VNIIEM, 2018, vol. 164, no. 3, pp. 44–46.

    Google Scholar 

  6. Tolstel’, O.V., Design and Optimization of Space Units Using Genetic Algorithms, Izv. Vuz. Av. Tekhnika, 2005, vol. 48, no. 4, pp. 41–44 [Russian Aeronautics (Engl. Transl.), vol. 48, no. 4, pp. 66–72].

    Google Scholar 

  7. Kraev, M.V., Ermoshkin, Yu.M., and Chugunov, A.E., Optimization of Layout of Spacecraft Engines for Orbit Inclination Correction, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 3, pp. 64–65 [Russian Aeronautics (Engl. Transl.), vol. 44, no. 3, pp. 94–96].

    Google Scholar 

  8. Katz, I., Jongeward, G., Davis, V., Mandell, M., Mikellides, I., Dressler, R., Boyd, I., Kannenberg, K., Pollard, J., and King, D., A Hall Effect Thruster Plume Model Including Large-Angle Elastic Scattering, Proc. of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2001, Salt Lake City, USA, AIAA paper no. 2001-3355.

    Google Scholar 

  9. Cai, C., Theoretical and Numerical Studies of Plume Flows in a Vacuum Chamber, Ph.D. Thesis, Ann Arbor, MI: Univ. of Michigan, 2005.

  10. Wang, J., Chen, L., Jiang, Y., and Lee, C.-H., Particle Simulation of an Anodelayer Hall Thruster Plume Using an Anisotropic Scattering Model, Acta Astronautica, 2020, vol. 175, pp. 19–31.

    Article  Google Scholar 

  11. Absalamov, S.K., Andreev, V.B., Colbert, T., Day, M., et al., Measurement of Plasma Parameters in the Stationary Plasma Thruster (SPT-100) Plume and Its Effect On Spacecraft Components, Proc. of the 28th Joint Propulsion Conference and Exhibit, 1992, Nashville, USA, AIAA paper no. 92-3156.

    Google Scholar 

  12. Pagano, D., Scaranzin, S., Meniconi, G., Scortecci, F., and Kutufa, N., Performance and Plume Characterization of the SPT100-B Thruster, Proc. 30th ISTS, 34th IEPC and 6th NSAT Joint Conf., 2015, Kobe-Hyogo, Japan, IEPC paper no. 2015-010.

    Google Scholar 

  13. Kim, V., Kozlov, V., Popov, G., and Skryl’nikov, A., Plasma Parameter Distribution Determination in SPT-70 Plume, Proc. 28th Int. Electric Propulsion Conf., 2003, Toulouse, Paper IEPC-2003-107, URL: https://www.researchgate.net/publication/237653100_PLASMA_PARAMETER_DISTRIBUTION_DETERMINATION_IN_SPT70_PLUME.

    Google Scholar 

  14. Azziz, Y., Experimental and Theoretical Characterization of a Hall Thruster Plume, Aeronautics and Astronautics, PhD Dissertation, USA, Massachusetts Institute of Technology, 2007.

  15. Frolova, Yu.L., Nadiradze, A.B., Lovtsov, A.S., and Tomilin, D.A., Method of Transferring the Results of Ground Measurements of the Plume Parameters of a Stationary Plasma Thruster to the Conditions of Full-Scale Operation, Uspekhi Prikladnoi Fiziki, 2020, vol. 8, no. 6, pp. 454–463.

    Google Scholar 

  16. Kozhevnikov, V.V., Nadiradze, A.B., Nazarenko, I.P., Frolova, Yu.L., and Khartov, S.A., Electric Propulsion Thrusters: Laboratory Investigation of Jets by Probe Methods, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 150–153 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 677–681].

    Google Scholar 

  17. Nazarenko, I.P., Gavryushin, V.M., and Evdokimov, K.V., High-Energy Electron Beam Relaxation in a Stationary Plasma Thruster, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 120–125 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 4, pp. 609–615].

    Google Scholar 

  18. Korsun, A.G. and Tverdokhlebova, E.M., The Characteristics of the EP Exhaust Plume in Space, Proc. AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 1997, Seattle, USA, article no. AIAA-1997-3065.

    Google Scholar 

  19. Korsun, A.G., Tverdokhlebova, E.M., and Gabdullin, F.F., The Distinction Between the EP Plume Expansion in Space and in Vacuum Chamber, Proc. 29th Int. Electric Propulsion Conf., Princeton Univ., 2005, IEPC article no. 2005-073.

    Google Scholar 

  20. Miller, J.S., Pullins, S.H., Levandier, D.J., et al., Xenon Charge Exchange Cross Sections for Electrostatic Thruster Models, Journal of Applied Physics, 2002, vol. 91, no. 3, pp. 984–991.

    Article  Google Scholar 

  21. Frolova, Yu.L., Nadiradze, A.B., Lovtsov, A.S., and Tomilin, D.A., Background Pressure Effect on the Parameters of a Stationary Plasma Thruster Plume, Prikladnaya Fizika, 2020, no. 6, pp. 45–50.

    Google Scholar 

  22. Nadiradze, A.B. and Frolova, Yu.L., Mechanisms for Forming Median-Energy Ions in the Jets of Stationary Plasma Thrusters, Vestnik MAI, 2020, vol. 27, no. 3, pp. 186–197.

    Google Scholar 

  23. Goebel, D.M. and Katz, I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, USA: California Institute of Technology, Jet Propulsion Laboratory, 2008.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Nadiradze.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 4, pp. 129 - 135.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadiradze, A.B., Nazarenko, I.P., Khartov, S.A. et al. Spreading Features of SPT Jets in Vacuum Chamber. Russ. Aeronaut. 64, 728–735 (2021). https://doi.org/10.3103/S1068799821040188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821040188

Keywords

Navigation