Skip to main content
Log in

Mathematical Model of a Single-Rotor Wheeled Helicopter Landing in Standard Conditions and Special Cases

  • FLIGHT DYNAMICS AND CONTROL OF FLIGHT VEHICLES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The main provisions of the methodology for calculating the landing of a helicopter on a tricycle wheeled landing gear, taking into account all the necessary design features of this type of landing gear and the peculiarities of the main rotor near the ground surface, are described. The comparison of computational studies with experimental data obtained during flight tests of the Mi-38 helicopter is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kruchinin, M.M. and Kuz’min, D.A., Helicopter Chassis Drop Tests Mathematical Modeling, Trudy MAI, 2017, no. 92, URL: http://trudymai.ru/upload/iblock/cbb/kruchinin_kuzmin_rus.pdf?lang=ru.

  2. Gimadiev, A.G., Greshnyakov, P.I., and Sinyakov, A.F., LMS Imagine.Lab Amesim kak effektivnoe sredstvo modelirovaniya dinamicheskikh protsessov v mekhatronnykh sistemakh (LMS Imagine.Lab Amesim as an Effective Tool for Modeling Dynamic Processes in Mechatronic Systems), Samara: SamNTs RAN, 2014.

    Google Scholar 

  3. Kruchinin, M.M. and Artamonov. B.L., Identification of the Mathematical Model of the Helicopter Landing Gear Shock Absorber in the LMS Amesim Software Package According to Test Data, Polet, 2017, nos. 9–10, pp. 75–80.

    Google Scholar 

  4. Simcenter Engineer Innovation, URL: https://www.plm.automation.siemens.com/global/ru/products/simcenter/.

  5. Simcenter Amesim, URL: https://ru.xcv.wiki/wiki/Simcenter_Amesim.

  6. Ivchin, V.A., Development of a Mathematical Model of a Helicopter Landing Gear Based on the Results of Experimental Studies of a Full-Scale Design, Nauchnyi Vestnik MGTU GA, 2013, no. 188, pp. 40–45.

    Google Scholar 

  7. Chuprikov, I.V., Popov, S.A., and Tarasov, A.L., Special Features of the Mathematical Model of Motion Dynamics for a Combat Helicopter on the Ground when Taxiing, Vozdushno-Kosmichskie Sily. Teoriya i Praktika, 2021, no. 17, pp. 150–160.

    Google Scholar 

  8. Mikhailov, S.A., Nedel’ko, D.V., and Nikolaev, E.I., Mathematical Model of a Helicopter Landing with Skid Landing Gear, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 1, pp. 8–12 [Russian Aeronautics (Engl. Transl.), vol. 44, no. 1, pp. 8–15].

    Google Scholar 

  9. Gantmakher, F.R., Lektsii po analiticheskoy mekhanike (Lectures in Analytical Mechanics), Moscow: Nauka, 1966.

    Google Scholar 

  10. Shaidakov, V.I., Disk Vortex Theory of Main Rotor with Constant Loading over the Disk, Trudy MAI, 1976, issue 381, pp. 57–69.

    Google Scholar 

  11. Shaidakov, V.I., Troshin, I.S., Ignatkin, Yu.M., and Artamonov, B.L., Algoritmy i programmy raschetov v zadachakh dinamiki vertoletov (Calculation Algorithms and Programs in Helicopter Dynamics Problems), Moscow: MAI, 1984.

    Google Scholar 

  12. Artamonov, B.L., The Influence of Earth Proximity on Aerodynamic Characteristics of the Helicopter Main Rotor, Trudy MAI, 1977, issue 406, pp. 32–41.

    Google Scholar 

  13. Yudakov, A.A., Principles of Constructing the General Elastic Body Dynamic Equations Based on the Craig-Bampton Model and Their Practically Significant Approximations, Vestnik Udmurtskogo Universiteya. Ser. Matem., Mekh., Komp. Nauki, 2012, no. 3, pp. 126–140.

    Article  Google Scholar 

  14. Craig, R.R. and Bampton, M.C.C., Coupling of Substructures for Dynamic Analysis, AIAA Journal, 1968. vol. 6, no. 7, pp. 1313–1319.

    Article  Google Scholar 

  15. Obraztsov, I.F., Savel’ev, L.M., and Khazanov, Kh. S., Metod konechnykh elementov v zadachakh stroitel’noi mekhaniki letatel’nykh apparatov (The Finite Element Method in the Problems of Structural Mechanics of Aircraft), Moscow: Vyshaya Shkola, 1985.

    MATH  Google Scholar 

  16. Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Element Analysis, Englewood Cliffs, New Jersey: Prentice Hall, 1976.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Artamonov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 4, pp. 55 - 64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruchinin, M.M., Artamonov, B.L. Mathematical Model of a Single-Rotor Wheeled Helicopter Landing in Standard Conditions and Special Cases. Russ. Aeronaut. 64, 636–645 (2021). https://doi.org/10.3103/S1068799821040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821040085

Keywords

Navigation