Skip to main content

Curved Composite Tubes: Stress-Strain Behavior Analysis and Design


This paper studies a computational and experimental method for stress-strain analysis and selection of efficient design for composite curved tubes. A finite element-based design model is developed. The paper presents the strength calculation results as well as compares the properties of curved tubes with different reinforcement patterns produced from various materials.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. Ganiev, R.I., Zyryanov, A.V., and Senyushkin, N.S., Special Features of Calculating the Strength of Composite Skid Chassis, Vestnik Irkutskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2014, vol. 85, no. 2, pp. 38–42.

    Google Scholar 

  2. Mikhailov, S.A., Nedel’ko, D.V., and Nikolaev, E.N., Raschet na prochnost’ polozkovogo shassi vertoleta (Strength Calculation of a Skid Landing Gear of a Helicopter), Kazan: Izd. Kaz. Gos. Tekhn. Universiteta, 2002.

    Google Scholar 

  3. Samipour, S.A., Khaliulin, V.I., and Batrakov, V.V., Development of the Technology of Manufacturing Aerospace Composite Tubular Elements by Radial Braiding, Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, no. 3, pp. 90–95 [Journal of Machinery Manufacture and Reliability (Engl. Transl.), vol. 47, no. 3, pp. 284–289].

    Google Scholar 

  4. Khaliulin, V.I., Batrakov, V.V., Shabalin, L.P., Kiauka, M.Yu., and Bezzametnov, O.N., The Research of the Mechanical Behavior of Transformable Composite Structures, Vestnik Permskogo Natsional’nogo Issledovatel’skogo Politekhnicheskogo Universiteta, 2019, no. 1, pp. 186–197.

    Google Scholar 

  5. Shabalin, L.P., Sidorov, I.N., Khaliulin, V.I., and Gorelov, A.V., A Technique of Calculating a Load-Bearing Frame of Aircraft Passenger Seat Unit in Virtual Certification Tests, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 138–141 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 4, pp. 662–666].

    Google Scholar 

  6. Mikhailov, S.A., Korotkov, L.V., Alimov, S.A., and Nedel’ko, D.V., Modeling of Landing of a Helicopter with Skid Undercarriage with Regard for the Second Landing Impact, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 3, pp. 13–16 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 3, pp. 247–253].

    Google Scholar 

  7. Mikhailov, S.A., Korotkov, L.V., and Nedel’ko, D.V., Analysis of Static Loading for a Helicopter Tubular Skid Landing Gear, Izv. Vuz. Av. Tekhnika, 2012, vol. 55, no. 4, pp. 15–18 [Russian Aeronautics (Engl. Transl.), vol. 55, no. 4, pp. 348–352].

    Google Scholar 

  8. Reimpell, J., Fahrwerktechnik: Federung Fahrwerkmechanik, Vogel Buchverlag, Würzburg, 1983.

    Google Scholar 

Download references


The paper was prepared as a part of the implementation of the 2020–2025 Program for the establishment and development of a world-class scientific center “Sverkhzvuk” under financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-11-2020-023 of December 8, 2020).

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. P. Shabalin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shabalin, L.P., Khaliulin, V.I., Shanygin, A.N. et al. Curved Composite Tubes: Stress-Strain Behavior Analysis and Design. Russ. Aeronaut. 64, 630–635 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • curved tubes
  • composites
  • finite element-based design
  • reinforcement patterns
  • calibration of design models