Rogowski, K., Królak, G., and Bangga, G., Numerical Study on the Aerodynamic Characteristics of the NACA 0018 Airfoil at Low Reynolds Number for Darrieus Wind Turbines using the Transition SST Model, Processes, 2021, vol. 9, no. 3, p. 477.
Article
Google Scholar
Koca, K., Genc, M.D., Acikel, H.H., Cagdas, M., and Bodur, T.M., Identification of Flow Phenomena over NACA 4412 Wind Turbine Airfoil at Low Reynolds Numbers and Role of Laminar Separation Bubble on Flow Evolution, Energy, 2018, vol. 144, pp. 750–764.
Article
Google Scholar
Bartl, J., Sagmo, K.F., Bracchi, T., and Sætran, L., Performance of the NREL S826 Airfoil at Low to Moderate Reynolds Numbers—A Reference Experiment for CFD Models, European Journal of Mechanics / B Fluids, 2019, vol. 75, pp. 180–192.
MathSciNet
Article
Google Scholar
Zhang, Y., van Zuijlen, A., and van Bussel, G., The MEXICO rotor Aerodynamic Loads Prediction: Zigzag Tape Effects and Laminar-Turbulent Transition Modeling in CFD, Journal of Wind Engineering and Industrial Aerodynamics, 2017, vol. 168, pp. 152–163.
Article
Google Scholar
Dick, E. and Kubacki, S., Transition Models for Turbomachinery Boundary Layer Flows: A Review, Int. Journal of Turbomachinery, Propulsion and Power, 2017, vol. 2, issue 4, URL: https://www.mdpi.com/2504-186X/2/2/4.
Desert, T., Jardin, T., Bezard, H., and Moschetta, J.M., Numerical Predictions of Low Reynolds Number Compressible Aerodynamics, Aerospace Science and Technology, 2019, vol. 92, pp. 211–223.
Article
Google Scholar
Liu, J., Xiao, Y., Li, M., Tao, J., and Xu, S., Intermittency, Moments, and Friction Coefficient during the Subcritical Transition of Channel Flow, Entropy, 2020, vol. 22, issue 12, article no. 1399, URL: https://www.mdpi.com/1099-4300/22/12/1399 .
Article
Google Scholar
Morimatsu, H. and Tsukahara, T., Laminar-Turbulent Intermittency in Annular Couette–Poiseuille Flow: Whether a Puff Splits or Not, Entropy, 2020, vol. 22, article no. 1353, URL: https://www.mdpi.com/1099-4300/22/12/1353.
Article
Google Scholar
Gazanion, B., Chedevergne, F., and Casalis, G., Large Eddy Simulation of the Laminar-Turbulent Transition in the Flow Induced by Wall Injection, Procedia IUTAM, 2015, vol. 14, pp. 438–447.
Article
Google Scholar
Catalano, P., Mele, B., and Tognaccini, R., On the Implementation of a Turbulence Model for Low Reynolds Number Flows, Computers and Fluids, 2015, vol. 109, pp. 67–71.
Article
Google Scholar
Liu, Y., Li, P., and Jiang, K., Comparative Assessment of Transitional Turbulence Models for Airfoil Aerodynamics in the Low Reynolds Number Range, Journal of Wind Engineering and Industrial Aerodynamics, 2021, vol. 217, article no. 104726.
Article
Google Scholar
Simoni, D., Lengani, D., Dellacasagrande, M., Kubacki, S., and Dick, E., An Accurate Database on Laminar-to-Turbulent Transition in Variable Pressure Gradient Flows, Int. Journal of Heat and Fluid Flow, 2019, vol. 77, pp. 84–97.
Article
Google Scholar
Rizzo, F., D’Alessandro, V., Montelpare, S., and Giammichele, L., Computational Study of a Bluff Body Aerodynamics: Impact of the Laminar-to-Turbulent Transition Modelling, Int. Journal of Mechanical Sciences, 2020, vol. 178, article no. 105620.
Article
Google Scholar
Yoshikawa, J., Nishio, Y., Izawa, S., and Fukunishi, Y., Key Structure in Laminar-Turbulent Transition of Boundary Layer with Streaky Structures, Theoretical and Applied Mechanics Letters, 2019, vol. 9, pp. 32–35.
Article
Google Scholar
Holman, J. and Furst, J., Numerical Simulation of Separation Induced Laminar to Turbulent Transition over an Airfoil, Journal of Computational and Applied Mathematics, 2021, vol. 394, article no. 113530.
Article
Google Scholar
Rezaei, A. and Taha, H., Circulation Dynamics of Small-Amplitude Pitching Airfoil Undergoing Laminar-to-Turbulent Transition, Journal of Fluids and Structures, 2021, vol. 100, article no. 103177.
Article
Google Scholar
Buzica, A. and Breitsamter, C., Turbulent and Transitional Flow around the AVT-183 Diamond Wing, Aerospace Science and Technology, 2019, vol. 92, pp. 520–535.
Article
Google Scholar
Liu, K., Wang, Y., Song, W.-P., and Han, Z.-H., A Two-Equation Local-Correlation-Based Laminar-Turbulent Transition Modeling Scheme for External Aerodynamics, Aerospace Science and Technology, 2020, vol. 106, article no. 106128.
Article
Google Scholar
Wauters, J. and Degroote, J., On the Study of Transitional Low-Reynolds Number Flows over Airfoils Operating at High Angles of Attack and Their Prediction Using Transitional Turbulence Models, Progress in Aerospace Sciences, 2018, vol. 103, pp. 52–68.
Article
Google Scholar
Kornev, A.V., Sereda, V.A., and Migalin, K.V., Aerodynamic Design Method of Integrated Aircraft with Submerged Intake Devices and Power Plant Included into Airframe Carrying System, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 17–25 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 1, pp. 14–22].
Google Scholar
Abzalilov, D.F. and Mardanov, R.F., Calculation and Optimization of the Aerodynamic Characteristics of Airfoils with Jet Blowing in the Presence of Vortex in the Flow, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 58–63 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 358–363].
Google Scholar
Nugmanov, Z.Hh. and Romanov, V.M., Calculation of Potential Incompressible Flow around Airfoil and High-Lift Profile Based on the Galerkin Method, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 4, pp. 34–37 [Russian Aeronautics (Engl. Transl.), vol. 44, no. 4, pp. 50–56].
Google Scholar
Kuznetsov, V.K., A Problem of Control Optimization of the Laminar Boundary Layer on a Circular Cylinder, Izv. Vuz. Av. Tekhnika, 2007, vol. 50, no. 2, pp. 14–18 [Russian Aeronautics (Engl. Transl.), vol. 50, no. 2, pp. 133–139].
Google Scholar
Il’inskii, N.B. and Solov’ev, S.A., A Boundary Value Problem of Aerohydrodynamics of Designing an Axisymmetric Body with Jet Blowing, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 2, pp. 44–48 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 2, pp. 182–190].
Google Scholar
Spalart, P.R. and Allmaras, S.R., A One-Equation Turbulence Model for Aerodynamic Flows, Proc. of the 30th Aerospace Sciences Meeting and Exhibit, Jan. 6–9, 1992, Reno, USA, AIAA Paper no. 1992-0439.
Turbulence Modelling Resource of Langley Research Center, URL: https://turbmodels.larc.nasa.gov.
Solomatin, R.S., Semenov, I.V., and Men’shov, I.S., Towards Calculating Turbulent Flows with the Spalart–Allmaras Model by Using the LU-SGS-GMRES Algorithm, KIAM Preprint, Moscow, 2018, no. 119, URL: https://library.keldysh.ru/preprint.asp?id=2018-119.
Malan, P., Suluksna, K., and Juntasaro, E., Calibrating the Gamma-Re_Theta Transition Model for Commercial CFD, Proc. of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Jan. 5–8 2009, Orlando, USA, AIAA Paper no. 2009-1142.
Menter, F.R., Langtry, R., and Volker, S., Transition Modelling for General Purpose CFD Codes, Flow Turbulence Combust, 2006, vol. 77, issues 1–4, pp. 277–303.
Article
Google Scholar
Smith, A. and Gamberoni, N., Transition, Pressure Gradient, and Stability Theory, Douglas Aircraft Co., Rep. ES 26388, 1956.
Van Ingen, J.L., A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region, Delft University of Technology, Dept. of Aerospace Engineering, Rep. VTH-74, 1956.
Drela, M., XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, in Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, Mueller, T.J., Ed., Berlin, Heidelberg: Springer, 1989, vol. 54, pp. 1–12.
Chapter
Google Scholar
Drela, M. and Giles, M., Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils, AIAA Journal, 1987, vol. 25, issue 10, pp. 1347–1355.
Article
Google Scholar
Bulat, P.V., Prodan, N.V., and Kurnukhin, A.A., On the Influence of the Laminar-Turbulent Transition in the Numerical Modeling of the Wing Airfoil, Izv. Vuz. Av. Tekhnika, 2021, vol. 64, no. 3, pp. 89–98 [Russian Aeronautics (Engl. Transl.), vol. 64, no. 3, pp. 455–465].
Google Scholar
Mueller, T.J., The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis, AIAA 17th Conference on Fluid Dynamics, Plasma Dynamics and Lasers, Colorado, June 25–27, 1984, AIAA Paper no. 84-1617.
Google Scholar
Volkov, K., Numerical Analysis of Navier–Stokes Equations on Unstructured Meshes, in Handbook on Navier–Stokes Equations: Theory and Analysis, Campos, D., Ed., USA: Nova Science, 2016, pp. 365–442.
Google Scholar