Skip to main content

Simulation of Flows at Low Reynolds Numbers as Applied to the Design of Aerodynamic Surfaces for Unmanned Aerial Vehicles


The paper investigates the applicability of various turbulence models for accurate modeling the aerodynamic surface design of unmanned aerodromeless transport aircraft. The numerical results are compared with the experimental data obtained as a result of the study of the airfoil section on an air test bench.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Rogowski, K., Królak, G., and Bangga, G., Numerical Study on the Aerodynamic Characteristics of the NACA 0018 Airfoil at Low Reynolds Number for Darrieus Wind Turbines using the Transition SST Model, Processes, 2021, vol. 9, no. 3, p. 477.

    Article  Google Scholar 

  2. Koca, K., Genc, M.D., Acikel, H.H., Cagdas, M., and Bodur, T.M., Identification of Flow Phenomena over NACA 4412 Wind Turbine Airfoil at Low Reynolds Numbers and Role of Laminar Separation Bubble on Flow Evolution, Energy, 2018, vol. 144, pp. 750–764.

    Article  Google Scholar 

  3. Bartl, J., Sagmo, K.F., Bracchi, T., and Sætran, L., Performance of the NREL S826 Airfoil at Low to Moderate Reynolds Numbers—A Reference Experiment for CFD Models, European Journal of Mechanics / B Fluids, 2019, vol. 75, pp. 180–192.

    MathSciNet  Article  Google Scholar 

  4. Zhang, Y., van Zuijlen, A., and van Bussel, G., The MEXICO rotor Aerodynamic Loads Prediction: Zigzag Tape Effects and Laminar-Turbulent Transition Modeling in CFD, Journal of Wind Engineering and Industrial Aerodynamics, 2017, vol. 168, pp. 152–163.

    Article  Google Scholar 

  5. Dick, E. and Kubacki, S., Transition Models for Turbomachinery Boundary Layer Flows: A Review, Int. Journal of Turbomachinery, Propulsion and Power, 2017, vol. 2, issue 4, URL:

  6. Desert, T., Jardin, T., Bezard, H., and Moschetta, J.M., Numerical Predictions of Low Reynolds Number Compressible Aerodynamics, Aerospace Science and Technology, 2019, vol. 92, pp. 211–223.

    Article  Google Scholar 

  7. Liu, J., Xiao, Y., Li, M., Tao, J., and Xu, S., Intermittency, Moments, and Friction Coefficient during the Subcritical Transition of Channel Flow, Entropy, 2020, vol. 22, issue 12, article no. 1399, URL: .

    Article  Google Scholar 

  8. Morimatsu, H. and Tsukahara, T., Laminar-Turbulent Intermittency in Annular Couette–Poiseuille Flow: Whether a Puff Splits or Not, Entropy, 2020, vol. 22, article no. 1353, URL:

    Article  Google Scholar 

  9. Gazanion, B., Chedevergne, F., and Casalis, G., Large Eddy Simulation of the Laminar-Turbulent Transition in the Flow Induced by Wall Injection, Procedia IUTAM, 2015, vol. 14, pp. 438–447.

    Article  Google Scholar 

  10. Catalano, P., Mele, B., and Tognaccini, R., On the Implementation of a Turbulence Model for Low Reynolds Number Flows, Computers and Fluids, 2015, vol. 109, pp. 67–71.

    Article  Google Scholar 

  11. Liu, Y., Li, P., and Jiang, K., Comparative Assessment of Transitional Turbulence Models for Airfoil Aerodynamics in the Low Reynolds Number Range, Journal of Wind Engineering and Industrial Aerodynamics, 2021, vol. 217, article no. 104726.

    Article  Google Scholar 

  12. Simoni, D., Lengani, D., Dellacasagrande, M., Kubacki, S., and Dick, E., An Accurate Database on Laminar-to-Turbulent Transition in Variable Pressure Gradient Flows, Int. Journal of Heat and Fluid Flow, 2019, vol. 77, pp. 84–97.

    Article  Google Scholar 

  13. Rizzo, F., D’Alessandro, V., Montelpare, S., and Giammichele, L., Computational Study of a Bluff Body Aerodynamics: Impact of the Laminar-to-Turbulent Transition Modelling, Int. Journal of Mechanical Sciences, 2020, vol. 178, article no. 105620.

    Article  Google Scholar 

  14. Yoshikawa, J., Nishio, Y., Izawa, S., and Fukunishi, Y., Key Structure in Laminar-Turbulent Transition of Boundary Layer with Streaky Structures, Theoretical and Applied Mechanics Letters, 2019, vol. 9, pp. 32–35.

    Article  Google Scholar 

  15. Holman, J. and Furst, J., Numerical Simulation of Separation Induced Laminar to Turbulent Transition over an Airfoil, Journal of Computational and Applied Mathematics, 2021, vol. 394, article no. 113530.

    Article  Google Scholar 

  16. Rezaei, A. and Taha, H., Circulation Dynamics of Small-Amplitude Pitching Airfoil Undergoing Laminar-to-Turbulent Transition, Journal of Fluids and Structures, 2021, vol. 100, article no. 103177.

    Article  Google Scholar 

  17. Buzica, A. and Breitsamter, C., Turbulent and Transitional Flow around the AVT-183 Diamond Wing, Aerospace Science and Technology, 2019, vol. 92, pp. 520–535.

    Article  Google Scholar 

  18. Liu, K., Wang, Y., Song, W.-P., and Han, Z.-H., A Two-Equation Local-Correlation-Based Laminar-Turbulent Transition Modeling Scheme for External Aerodynamics, Aerospace Science and Technology, 2020, vol. 106, article no. 106128.

    Article  Google Scholar 

  19. Wauters, J. and Degroote, J., On the Study of Transitional Low-Reynolds Number Flows over Airfoils Operating at High Angles of Attack and Their Prediction Using Transitional Turbulence Models, Progress in Aerospace Sciences, 2018, vol. 103, pp. 52–68.

    Article  Google Scholar 

  20. Kornev, A.V., Sereda, V.A., and Migalin, K.V., Aerodynamic Design Method of Integrated Aircraft with Submerged Intake Devices and Power Plant Included into Airframe Carrying System, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 1, pp. 17–25 [Russian Aeronautics (Engl. Transl.), vol. 61, no. 1, pp. 14–22].

    Google Scholar 

  21. Abzalilov, D.F. and Mardanov, R.F., Calculation and Optimization of the Aerodynamic Characteristics of Airfoils with Jet Blowing in the Presence of Vortex in the Flow, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 58–63 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 358–363].

    Google Scholar 

  22. Nugmanov, Z.Hh. and Romanov, V.M., Calculation of Potential Incompressible Flow around Airfoil and High-Lift Profile Based on the Galerkin Method, Izv. Vuz. Av. Tekhnika, 2001, vol. 44, no. 4, pp. 34–37 [Russian Aeronautics (Engl. Transl.), vol. 44, no. 4, pp. 50–56].

    Google Scholar 

  23. Kuznetsov, V.K., A Problem of Control Optimization of the Laminar Boundary Layer on a Circular Cylinder, Izv. Vuz. Av. Tekhnika, 2007, vol. 50, no. 2, pp. 14–18 [Russian Aeronautics (Engl. Transl.), vol. 50, no. 2, pp. 133–139].

    Google Scholar 

  24. Il’inskii, N.B. and Solov’ev, S.A., A Boundary Value Problem of Aerohydrodynamics of Designing an Axisymmetric Body with Jet Blowing, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 2, pp. 44–48 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 2, pp. 182–190].

    Google Scholar 

  25. Spalart, P.R. and Allmaras, S.R., A One-Equation Turbulence Model for Aerodynamic Flows, Proc. of the 30th Aerospace Sciences Meeting and Exhibit, Jan. 6–9, 1992, Reno, USA, AIAA Paper no. 1992-0439.

  26. Turbulence Modelling Resource of Langley Research Center, URL:

  27. Solomatin, R.S., Semenov, I.V., and Men’shov, I.S., Towards Calculating Turbulent Flows with the Spalart–Allmaras Model by Using the LU-SGS-GMRES Algorithm, KIAM Preprint, Moscow, 2018, no. 119, URL:

  28. Malan, P., Suluksna, K., and Juntasaro, E., Calibrating the Gamma-Re_Theta Transition Model for Commercial CFD, Proc. of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Jan. 5–8 2009, Orlando, USA, AIAA Paper no. 2009-1142.

  29. Menter, F.R., Langtry, R., and Volker, S., Transition Modelling for General Purpose CFD Codes, Flow Turbulence Combust, 2006, vol. 77, issues 1–4, pp. 277–303.

    Article  Google Scholar 

  30. Smith, A. and Gamberoni, N., Transition, Pressure Gradient, and Stability Theory, Douglas Aircraft Co., Rep. ES 26388, 1956.

  31. Van Ingen, J.L., A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region, Delft University of Technology, Dept. of Aerospace Engineering, Rep. VTH-74, 1956.

  32. Drela, M., XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils, in Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, Mueller, T.J., Ed., Berlin, Heidelberg: Springer, 1989, vol. 54, pp. 1–12.

    Chapter  Google Scholar 

  33. Drela, M. and Giles, M., Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils, AIAA Journal, 1987, vol. 25, issue 10, pp. 1347–1355.

    Article  Google Scholar 

  34. Bulat, P.V., Prodan, N.V., and Kurnukhin, A.A., On the Influence of the Laminar-Turbulent Transition in the Numerical Modeling of the Wing Airfoil, Izv. Vuz. Av. Tekhnika, 2021, vol. 64, no. 3, pp. 89–98 [Russian Aeronautics (Engl. Transl.), vol. 64, no. 3, pp. 455–465].

    Google Scholar 

  35. Mueller, T.J., The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis, AIAA 17th Conference on Fluid Dynamics, Plasma Dynamics and Lasers, Colorado, June 25–27, 1984, AIAA Paper no. 84-1617.

    Google Scholar 

  36. Volkov, K., Numerical Analysis of Navier–Stokes Equations on Unstructured Meshes, in Handbook on Navier–Stokes Equations: Theory and Analysis, Campos, D., Ed., USA: Nova Science, 2016, pp. 365–442.

    Google Scholar 

Download references


This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation during the implementation of the project “Fundamentals of mechanics, control and management systems for unmanned aerial systems with shape-forming structures, deeply integrated with power plants, and unique properties that are not used today in manned aircraft”, no. FEFM-2020-0001.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. I. Mel’nikova.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dudnikov, S.Y., Kuznetsov, P.N., Mel’nikova, A.I. et al. Simulation of Flows at Low Reynolds Numbers as Applied to the Design of Aerodynamic Surfaces for Unmanned Aerial Vehicles. Russ. Aeronaut. 64, 620–629 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • turbulence models
  • laminar-turbulent transition
  • separation bubble
  • boundary layer
  • wing airfoil
  • numerical simulation