Skip to main content

Boeing 777 Fleet Statistical Contingency Fuel Determination on Fixed Routes

Abstract

The statistical contingency fuel determination method was developed for the objects “long-range aircraft type—fixed route”. The statistical contingency fuel reserve is numerically determined for the period of 2016–2018 years for the Boeing 777 type fleet on the scheduled flights Moscow–Khabarovsk and Moscow–Yuzhno-Sakhalinsk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2.
Fig. 3

REFERENCES

  1. Annex 16 to the Convention on International Civil Aviation. Environmental protection, ICAO, 2017, volume III. Aeroplane CO2 Emissions.

  2. Brueckner, J.K., and Abreu, C., Airline Fuel Usage and Carbon Emissions: Determining Factors, Journal of Air Transport Management, 2017, vol. 62, pp. 10–17.

    Article  Google Scholar 

  3. Annex 6 to the Convention on International Civil Aviation. Operation of Aircraft, Montreal: ICAO, 2016, part I. International Commercial Air Transport. Aeroplanes.

  4. Doc 9976. Flight Planning and Fuel Management Manual (FPFM), Montreal: ICAO, 2015.

  5. Kovalenko, G.V., Mikinelov, A.L., and Chepiga, V.E., Letnaya ekspluatatsiya (Flight Operation), St. Petersburg: Nauka, 2016, part 1.

    Google Scholar 

  6. Federal’nye aviatsionnye pravila “Podgotovka i vypolnenie poletov v grazhdanskoi aviatsii Rossiiskoi Federatsii” (Federal Aviation Regulations “Preparation and Performance of Flights in Civil Aviation of the Russian Federation”), URL: https://base.garant.ru/196235/b89690251be5277812a78962f6302560/.

  7. Abramov, B.A., Akopyan, K.E., and Shapkin, V.S., Foreign-Built Aircraft Operation Problems, Nauchnyi Vestnik MGTU GA, 2011, vol. 163, pp. 14–23.

    Google Scholar 

  8. Dobrodeev, A.V., A Mathematical Model for a Process of Fuel State Variation When it is Fed into an Engine, Izv. Vuz. Av. Tekhnika, 2003, vol. 46, no. 1, pp. 70–73 [Russian Aeronautics (Engl. Transl.), vol. 46, no. 1, pp. 111–115].

    Google Scholar 

  9. Smolentsev, V.P., Safonov, S.V., and Koptev, I.I., The Adjustment of Discharge and Spray in Fuel Injectors of Aircraft Engines, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 117–123 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 571–578].

    Google Scholar 

  10. Inozemtsev, A.A., Andryukov, N.A., Vasil’ev, A.N., Medvedev, A.V., and Tashkinov, V.A., Investigation of In-Service Fuel Pressure Decrease in the PS-90a Engine Nozzles, Izv. Vuz. Av. Tekhnika, 2000, vol. 43, no. 3, pp. 69–71 [Russian Aeronautics (Engl. Transl.), vol. 43, no. 3].

    Google Scholar 

  11. Guidance Material and Best Practices for Fuel and Environmental Management. Ref. No: 9791-05. Motreal – Geneva: International Air Transport Association (IATA), 2011.

  12. Krajcek, K., Nikolic, D., and Domitrovic, A., Aircraft Performance Monitoring from Flight Data, Tehnicki Vjesnik, 2015, vol. 22, issue 5, pp. 1337–1344.

    Google Scholar 

  13. Obrubov, A.G and Pogodaev, A.A., Improving the Passenger Aircraft Fuel Efficiency during Landing, Uchenye Zapiski TsAGI, 1991, vol. 22, no. 3, pp. 61–70.

    Google Scholar 

  14. Tang, N.Y.A., Wu, C.L., and Tan, D., Evaluating the Implementation of Performance-Based Fuel Uplift Regulation for Airline Operation, Transportation Research Part A-policy and Practice, 2020, vol. 133, pp. 47–61.

    Article  Google Scholar 

  15. Lugovoi, V.G., Sorokin, A.V., and Shilov, O.V., Fuel Planning Problems for Flights via Standard Arrival Routes (STAR) with Delay Legs, Nauchnyi Vestnik MGTU GA, 2019, vol. 22, no. 2, pp. 28–37.

    Article  Google Scholar 

  16. Kang, L. and Hansen, M., Improving Airline Fuel Efficiency via Fuel Burn Prediction and Uncertainty Estimation, Transportation Research Part C-Emerging Technologies, 2018, vol. 97, pp. 128–146.

    Article  Google Scholar 

  17. Tarnovskaya, L.I., Statistika (Statistics), Tomsk: Izd. TPU, 2008.

    Google Scholar 

  18. Vadzinskii, R.N., Statisticheskie vychisleniya v srede Excel (Statistical Calculations in the Excel Environment), St. Petersburg: Piter, 2008.

    Google Scholar 

  19. Korkeamäki, T., Liljeblom, E., and Pfister, M., Airline Fuel Hedging and Management Ownership, Journal of Risk Finance, 2016, vol. 17, issue 5, pp. 492–509.

    Article  Google Scholar 

  20. Navuluri, M., Bheema, S., and Chunduru, A., Airline Data Analysis, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2019, vol. 5, issue 1, pp. 22–29.

    Google Scholar 

  21. Opryshko, U.V., Modeling the Value of Long-Range Aircraft Operating Costs, Konkurentosposobnost’ v Global’nom Mire: Ekonomika, Nauka, Tekhnologii, 2017, no. 11 (58), pp. 764–778.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Kuts.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuts, K.A., Kovalenko, G.V. Boeing 777 Fleet Statistical Contingency Fuel Determination on Fixed Routes. Russ. Aeronaut. 64, 583–590 (2021). https://doi.org/10.3103/S1068799821040012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821040012

Keywords

  • statistical contingency fuel
  • fuel efficiency
  • degradation factor