Annex 16 to the Convention on International Civil Aviation. Environmental protection, ICAO, 2017, volume III. Aeroplane CO2 Emissions.
Brueckner, J.K., and Abreu, C., Airline Fuel Usage and Carbon Emissions: Determining Factors, Journal of Air Transport Management, 2017, vol. 62, pp. 10–17.
Article
Google Scholar
Annex 6 to the Convention on International Civil Aviation. Operation of Aircraft, Montreal: ICAO, 2016, part I. International Commercial Air Transport. Aeroplanes.
Doc 9976. Flight Planning and Fuel Management Manual (FPFM), Montreal: ICAO, 2015.
Kovalenko, G.V., Mikinelov, A.L., and Chepiga, V.E., Letnaya ekspluatatsiya (Flight Operation), St. Petersburg: Nauka, 2016, part 1.
Google Scholar
Federal’nye aviatsionnye pravila “Podgotovka i vypolnenie poletov v grazhdanskoi aviatsii Rossiiskoi Federatsii” (Federal Aviation Regulations “Preparation and Performance of Flights in Civil Aviation of the Russian Federation”), URL: https://base.garant.ru/196235/b89690251be5277812a78962f6302560/.
Abramov, B.A., Akopyan, K.E., and Shapkin, V.S., Foreign-Built Aircraft Operation Problems, Nauchnyi Vestnik MGTU GA, 2011, vol. 163, pp. 14–23.
Google Scholar
Dobrodeev, A.V., A Mathematical Model for a Process of Fuel State Variation When it is Fed into an Engine, Izv. Vuz. Av. Tekhnika, 2003, vol. 46, no. 1, pp. 70–73 [Russian Aeronautics (Engl. Transl.), vol. 46, no. 1, pp. 111–115].
Google Scholar
Smolentsev, V.P., Safonov, S.V., and Koptev, I.I., The Adjustment of Discharge and Spray in Fuel Injectors of Aircraft Engines, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 117–123 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 571–578].
Google Scholar
Inozemtsev, A.A., Andryukov, N.A., Vasil’ev, A.N., Medvedev, A.V., and Tashkinov, V.A., Investigation of In-Service Fuel Pressure Decrease in the PS-90a Engine Nozzles, Izv. Vuz. Av. Tekhnika, 2000, vol. 43, no. 3, pp. 69–71 [Russian Aeronautics (Engl. Transl.), vol. 43, no. 3].
Google Scholar
Guidance Material and Best Practices for Fuel and Environmental Management. Ref. No: 9791-05. Motreal – Geneva: International Air Transport Association (IATA), 2011.
Krajcek, K., Nikolic, D., and Domitrovic, A., Aircraft Performance Monitoring from Flight Data, Tehnicki Vjesnik, 2015, vol. 22, issue 5, pp. 1337–1344.
Google Scholar
Obrubov, A.G and Pogodaev, A.A., Improving the Passenger Aircraft Fuel Efficiency during Landing, Uchenye Zapiski TsAGI, 1991, vol. 22, no. 3, pp. 61–70.
Google Scholar
Tang, N.Y.A., Wu, C.L., and Tan, D., Evaluating the Implementation of Performance-Based Fuel Uplift Regulation for Airline Operation, Transportation Research Part A-policy and Practice, 2020, vol. 133, pp. 47–61.
Article
Google Scholar
Lugovoi, V.G., Sorokin, A.V., and Shilov, O.V., Fuel Planning Problems for Flights via Standard Arrival Routes (STAR) with Delay Legs, Nauchnyi Vestnik MGTU GA, 2019, vol. 22, no. 2, pp. 28–37.
Article
Google Scholar
Kang, L. and Hansen, M., Improving Airline Fuel Efficiency via Fuel Burn Prediction and Uncertainty Estimation, Transportation Research Part C-Emerging Technologies, 2018, vol. 97, pp. 128–146.
Article
Google Scholar
Tarnovskaya, L.I., Statistika (Statistics), Tomsk: Izd. TPU, 2008.
Google Scholar
Vadzinskii, R.N., Statisticheskie vychisleniya v srede Excel (Statistical Calculations in the Excel Environment), St. Petersburg: Piter, 2008.
Google Scholar
Korkeamäki, T., Liljeblom, E., and Pfister, M., Airline Fuel Hedging and Management Ownership, Journal of Risk Finance, 2016, vol. 17, issue 5, pp. 492–509.
Article
Google Scholar
Navuluri, M., Bheema, S., and Chunduru, A., Airline Data Analysis, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2019, vol. 5, issue 1, pp. 22–29.
Google Scholar
Opryshko, U.V., Modeling the Value of Long-Range Aircraft Operating Costs, Konkurentosposobnost’ v Global’nom Mire: Ekonomika, Nauka, Tekhnologii, 2017, no. 11 (58), pp. 764–778.
Google Scholar