Skip to main content
Log in

Analysis of Noise Immunity of the UAV Onboard Control System Based on Physical Modeling of Induced Interference

  • RADIO ENGINEERING AND COMMUNICATION
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The probability of a malfunction in the operation of the onboard control system of an unmanned aerial vehicle under the influence of induced interference from a lightning discharge in the near zone is considered. The temporal shape and parameters of the induced interference are obtained on the basis of physical modeling. A technique for physical modeling and a test bed for physical experiments on a reduced scale were developed. An example of calculating the probability of failure in the operation of the onboard control system of an unmanned aerial vehicle under the influence of induced interference is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Handbook of Unmanned Aerial Vehicles, Eds. Valavanis, K.P. and Vachtsevanos, G.J., New York: Springer, 2015.

    Google Scholar 

  2. Sebbane, Y.B., Intelligent Autonomy of UAVs: Advanced Missions and Future Use, London: Chapman and Hall/CRC, 2018.

    Book  Google Scholar 

  3. Lyasheva, S.A., Medvedev, M.V., and Shleimovich, M.P., Terrain Object Recognition in Unmanned Aerial Vehicle Control System, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 64–66 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 3, pp. 303–306].

    Google Scholar 

  4. Shleymovich, M.P., Medvedev, M.V., and Lyasheva, S.A., Image Analysis in Unmanned Aerial Vehicle on-Board System for Objects Detection and Recognition with the Help of Energy Characteristics Based on Wavelet Transform, Proc. of the SPIE 14th International Scientific and Technical Conference on Optical Technologies in Telecommunications, 2017, vol. 10342, article no. 1034210.

    Google Scholar 

  5. Emaletdinova, L.Yu., Matveev, I.V., and Kabirova, A.N., Method of Designing a Neural Controller for the Automatic Lateral Control of Unmanned Aerial Vehicles, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 3, pp. 44–51 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 3, pp. 365–373].

    Google Scholar 

  6. Gizatullin, Z.M., Gizatullin, R.M., and Nuriev, M.G., Technique of Physical Modeling of Lightning Strike Effects on Aircraft, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 2, pp. 3–6 [Russian Aeronautics (Engl. Transl.), 2016, vol. 59, no. 2, pp. 157–160].

    Google Scholar 

  7. Komyagin, S.I., Osnovy metodologii elektromagnitnoi stoikosti bespilotnykh letatelnykh apparatov (Fundamentals of Methodology of Electromagnetic Stability of Unmanned Aerial Vehicles), Moscow: MIEM, 2007.

    Google Scholar 

  8. Kravchenko, V.I., Bolotov, E.A., and Letunova, N.I., Radioelektronnye sredstva i moshchnye elektromagnitnye pomekhi (Radio-Electronic Tools and Powerful Electromagnetic Interference), Moscow: Radio i Svyaz’, 1987.

    Google Scholar 

  9. Nuriev, M.G., Gizatullin, Z.M., and Gizatullin, R.M., Physical Modeling of Electromagnetic Interferences in the Unmanned Aerial Vehicle in the Case of High-Voltage Transmission Line Impact, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 119–124 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 2, pp. 292–298].

    Google Scholar 

  10. Nuriev, M.G., Gizatullin, R.M., and Gizatullin, Z.M., Physical Modeling of Electromagnetic Interference in Unmanned Aerial Vehicle under Action of the Electric Transport Contact Network, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 2, pp. 137–141 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 2, pp. 293–298].

    Google Scholar 

  11. Gizatullin, R.M. and Suetina, T.A., Noise Immunity of Computer Equipment with Dynamic Changes in Power Supply Voltage, Proc. of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (Fareast Conf.), 2019, Vladivostok, Russia, pp. 1–4.

    Google Scholar 

  12. Averin, S.V., Kirillov, V.Y., Mashukov, E.V., Reznikov, S.B., and Shevtsov, D.A., Ensuring the Electromagnetic Compatibility of Onboard Cables for Unmanned Aerial Vehicles, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 3, pp. 113–117 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60, no. 3, pp. 442–446].

    Google Scholar 

  13. Khaliulin, V.I., Khilov, P.A., and Toroptsova, D.M., Prospects of Applying the Tailored Fiber Placement (TFP) Technology for Manufacture of Composite Aircraft Parts, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 127–132 [Russian Aeronautics (Engl. Transl.), 2015, vol. 58, no. 4, pp. 495–500].

    Google Scholar 

  14. Gainutdinov, R.R., Electromagnetic Resistance of an Unmanned Aerial Vehicle under the Indirect Impact of a Lightning Discharge, Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva, 2017, no. 4, pp. 177–184.

    Google Scholar 

  15. Garanin, I.N. and Suzdal’tsev, I.V., Development of a Methodology for Solving the Problem of Channel Tracing of the Cable Network of an Unmanned Aerial Vehicle Using the Ant Algorithm, Materialy 5-i Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye materialy, tekhnika i tekhnologiya” (Proc. of the 5th International Conf. “Modern Materials, Equipment and Technology”), Kursk: Universitetskaya Kniga, 2015, pp. 41–44.

    Google Scholar 

  16. Suzdal’tsev, I.V. and Ismagilov, R.N., Automated Placement of Airborne Electronic Devices in the UAV’s In-Fuselage Space Taking into Account the Criteria of Electromagnetic Compatibility, Sbornik dokladov Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Novye tekhnologii, materialy i oborudovaniye Rossiiskoi aviakosmicheskoi otrasli” (Coll. of Reports of All-Russia Sci.-Pract. Conf. with Int. Participant “New Technologies, Materials and Instruments of Russian Aviation and Space Industry”), 2016, Kazan: AN RT, 2016, vol. 2, pp. 232–238.

    Google Scholar 

  17. Sapmson, B., Predator B Drone Completes Lightning Tests, Aerospace Testing International, 2018, URL: https://www.aerospacetestinginternational.com/news/emc/predator-b-drone-completes-lightning-tests.html.

  18. Altman, S.S., Vulfin, V., Leibovich, H., Heinrich, R., and Ianconescu, R., Lighting Strike Analysis for Drones, 2017 IEEE International Conf. on Microwaves, Antennas, Communications, and Electronic Systems, Tel-Aviv, 2017, pp. 1–4.

    Google Scholar 

  19. Kossowski, T. and Filik, K., Lightning Tests of Unmanned Aircrafts with Impulse Generator, Przeglad Elektrotechniczny, 2020, no. 8, pp. 67–70.

    Google Scholar 

  20. Karch, C., Paul, C., and Heidler, F., Lightning Strike Protection of Radomes, Proc. of the International Symposium on Electromagnetic Compatibility, Barcelona, 2019, pp. 650–655.

    Google Scholar 

  21. Garcia, S.G., et al., UAVEMI Project: Numerical and Experimental EM Immunity Assessment of UAV for HIRF and Lightning Indirect Effects, 2016 ESA Workshop on Aerospace EMC, Valencia, Spain, 2016, pp. 1–5.

    Google Scholar 

  22. Fisher, F.A., Plumer, J.A., and Perala, R.A., Aircraft Lightning Protection Handbook, Denver: Federal Aviation Administration Technical Center, 1989.

    Google Scholar 

  23. Stratton, J.A., Electromagnetic Theory, New York: McGraw-Hill, 1941.

    MATH  Google Scholar 

  24. Venikov, V.A., Teoriya podobiya i modelirovaniya (Similarity Theory and Modeling), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  25. Kohlberg, I. and Carter, R.J., Some Theoretical Considerations Regarding the Susceptibility of Information Systems to Unwanted Electromagnetic Signals, Proc. of the 4th Int. Zurich Symp. and Technical Exhibition on Electromagnetic Compatibility, Zurich, 2001, pp. 41–46.

    Google Scholar 

  26. Zduhov, L.N., Isaev, A.P., Parfenov, Yu.V., and Titov, B.A., Methods of Assessing the Probability of Digital Device Failures When Exposed to Ultrashort Electromagnetic Pulses, Zhurnal Radioelektroniki, 2011, no. 5, URL: http://jre.cplire.ru/jre/may11/1/text.pdf.

  27. Ispytatel’nyi generator mikrosekundnykh impulsnykh pomekh IGM 4.1. Tekhnicheskoe opisanie: rukovodstvo po ekspluatatsii (Test Generator of Microsecond Pulse Noise IGM 4.1. Technical Description: Manual), Passport no. PS 0309467, Petrozavodsk: NPO Proryv, 2009.

  28. Kechiev, L.N., Proektirovanie pechatnykh plat dlya tsifrovoi bystrodeistvuyushchei apparatury (Designing Printed Circuit Boards for Digital High-Speed Equipment), Moscow: OOO Gruppa IDT, 2007.

    Google Scholar 

  29. Chernikova, E.B., Belousov, A.O., Gazizov, T.R., and Zabolotsky, A.M., Using Reflection Symmetry to Improve the Protection of Radio-Electronic Equipment from Ultrashort Pulses, Symmetry, 2019, vol. 11, no. 7. URL: https://www.mdpi.com/2073-8994/11/7/883.

  30. Chernikova, E.B., Kvasnikov, A.A., Zabolotsky, A.M., and Kuksenko, S.P., Evaluating the Influence of the Magnetic Permeability of the Microstrip Modal Filter Substrate on its Frequency Characteristics, Journal of Physics: Conference Series, 2020, vol. 1611, article no. 012032.

    Google Scholar 

  31. Zhuravlev, S.Yu., Kirillov, V.Yu., and Zhukov, P.A., Research of Radio-Absorbing Materials for Spacecraft, Tekhnologii Elektromagnitnoi Sovmestimosti, 2018, no. 4 (67), pp. 32–39.

    Google Scholar 

  32. Zhukov, P.A., and Kirillov, V.Yu., The Application of Radar Absorbing Materials to Reduce Interference Emissions from Instruments and Devices of Spacecraft Electrical Systems, IOP Conf. Series: Materials Science and Engineering, 2020, vol. 868, article no. 012009.

    Article  Google Scholar 

  33. Zhukov, P.A. and Kirillov, V.Yu., The Use of Radar Absorbing Materials for Electronic Devices, Proc. of the International Youth Conf. on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, 2020, article no. 90592210.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Gizatullin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 180 - 186.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gizatullin, Z.M., Shleimovich, M.P. Analysis of Noise Immunity of the UAV Onboard Control System Based on Physical Modeling of Induced Interference. Russ. Aeronaut. 64, 554–561 (2021). https://doi.org/10.3103/S1068799821030259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030259

Keywords

Navigation