Skip to main content
Log in

Panoramic Sensor of the Aerodynamic Angle and True Airspeed with the Fixed Receiver and Ultrasonic Instrumentation Channels

  • AIRCRAFT INSTRUMENTS AND INSTRUMENTATION COMPUTER COMPLEXES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The functional diagram is given, analytical models of processing and determining of the aerodynamic angle and true airspeed of the panoramic sensor with the fixed receiver of incident flow and ultrasonic instrumentation channels are disclosed. The competitive advantages and prospects of using the original panoramic sensor of the aerodynamic angle and true airspeed with ultrasonic instrumentation channels on small-sized manned and unmanned aircraft vehicles are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Makarov, N.N., Systemy obespecheniya bezopasnosti funktsionirovaniya bortovogo ergaticheskogo kompleksa: teoriya, proektirovanie, primenenie (Systems of Ensuring Safety of Functioning of Onboard Ergatic Complex: Theory, Design, Application), Moscow: Mashinostroenie, 2009.

    Google Scholar 

  2. Klyuev, G.I., Makarov, N.N., Soldatkin, V.M., and Efimov, I.P., Izmeriteli aerodinamicheskikh parametrov letatel’nykh apparatov (Measuring Instruments of the Dynamic Parameters of the Aircraft), Ulyanovsk: Izd. Ul. Gos. Tekh. Univ., 2005.

    Google Scholar 

  3. Soldatkin, V.M., Metody i sredstva izmereniya aerodinamicheskikh uglov (Methods and Means of Measurement of Aerodynamic Angles of the Aircraft), Kazan: Izd. Kaz. Gos. Tekh. Univ., 2001.

    Google Scholar 

  4. Soldatkin, V.M. and Soldatkina, E.S., Vortex Sensor of Aerodynamic Angle and True Airspeed, Izv. Vuz. Av. Tekhnika, 2012, vol. 55, no. 4, pp. 56–59 [Russian Aeronautics (Engl. Transl.), 2012, vol. 55, no. 4,pp. 402–407].

    Google Scholar 

  5. Soldatkina, E.S., Systems Engineering Design of a Vortex Aerodynamic Angle and True Airspeed Sensor, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 3, pp. 57–61 [Russian Aeronautics (Engl. Transl.), 2013, vol. 56, no. 3, pp. 291–296].

    Google Scholar 

  6. Efremova, E.S. and Soldatkin, V.M., Models of Signals, Algorithms and Errors of Instrumental Channels of the Air Data System Based on the Vortex Method, Izv. Vuz. Av. Tekhnika, 2020, vol. 63, no. 3, pp. 97–103 [Russian Aeronautics (Engl. Transl.), 2020, vol. 63, no. 3, pp. 476–482].

    Google Scholar 

  7. Ganeev, F.A. and Soldatkin, V.M. Ion-marking Aerodynamic Angle and Airspeed Sensor with Logometric Informative Signals and Interpolation Processing Scheme, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 3, pp. 46–50 [Russian Aeronautics (Engl. Transl.), 2010, vol. 53, no. 3, pp. 312–319].

    Google Scholar 

  8. Kremlevskii, P.P., Raskhodomery i schetchiki kolichestva (Flow Meters and Quantity Counters), Leningrad: Mashinostroenie, 1973.

    Google Scholar 

  9. Soldatkin, V.M., Soldatkin, V.V., Nikitin, A.V., Efremova, E.S., and Ariskin, E.O., RF Patent 2019115017, 2019, Byul. Izobr., no. 22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Soldatkin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 153 - 159.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatkin, V.V., Soldatkin, V.M., Efremova, E.S. et al. Panoramic Sensor of the Aerodynamic Angle and True Airspeed with the Fixed Receiver and Ultrasonic Instrumentation Channels. Russ. Aeronaut. 64, 526–532 (2021). https://doi.org/10.3103/S1068799821030211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030211

Keywords

Navigation