Skip to main content
Log in

Chemically Nonequilibrium Flows of Nitrocellulose Fuel Combustion Products in Aircraft Engine Nozzles

  • AIRCRAFT AND ROCKET ENGINE THEORY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A modified mathematical model of chemically nonequilibrium heterogeneous flows in nozzles is proposed. The reaction mechanism reduction procedure includes the DRGEP method and the adaptive threshold engagement method using the concepts of “large molecules” and aggregated inert substance. The proposed procedure was used to calculate the flow of the nitrocellulose fuel combustion products. A significant reduction in the initial reaction mechanism was achieved with an acceptable accuracy in predicting the specific impulse and the composition of the working fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Sokolov, B.I., Cherenkov, A.S., and Salomykov, A.I., Termodinamicheskie i teplofizicheskie svoistva tverdykh raketnykh topliv i ikh produktov sgoraniya (Thermodynamic and Thermophysical Properties of Solid Rocket Propellants and Their Combustion Products), Moscow: Ministerstvo Oborony SSSR, 1977.

    Google Scholar 

  2. Barbour, E.A. and Hanson, R.K., Chemical Nonequilibrium, Heat Transfer, and Friction in a Detonation Tube with Nozzles, Journal of Propulsion and Power, 2010, vol. 26, no. 2, pp. 230–239.

    Article  Google Scholar 

  3. Guzachev, D.S., Kratirov, D.V., Zorin, V.A., and Mikheev, N.I., Small-Size Rocket Impulse-Reaction Launch Dynamics, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 2, pp. 18–20 [Russian Aeronautics (Engl. Transl.), 2011, vol. 54, no. 2, pp. 141–145].

    Google Scholar 

  4. Gidaspov, V.Yu. and Severina, N.S., Modelling of Detonation of Metal-Gaseous Propellant Mixtures in the High-Temperature Flow Downstream of Shock Wave, Teplofizika Vysokikh Temperatur, 2019, vol. 57, no. 4, pp. 560–571.

    Google Scholar 

  5. Milekhin, Yu.M., Popov, V.S., Burskii, G.V., Gusev, S.A., and Sadovnichii, D.N., Modeling of Coupled Gas-Thermodynamic Processes in Solid-Propellant Ramjet Engines Allowing Kinetics of Chemical Reactions. Part I. Problem Statement, Izv. RARAN, 2019, no. 2(107), pp. 51–57.

    Google Scholar 

  6. Maggi, F., Gariani, G., Galfetti, L., and De Luca, L.T., Theoretical Analysis of Hydrides in Solid and Hybrid Rocket Propulsion, International Journal of Hydrogen Energy, 2012, vol. 37, issue 2, pp. 1760–1769.

    Article  Google Scholar 

  7. Naoumov, V.I., Krioukov, V.G., Abdullin, A.L., and Gasilin, V.V., The Reduction of Chemical Kinetic Mechanisms in High-Temperature Heterogeneous Flows in a Nozzle, Proc. the AIAA SciTech Forum, 2021, article no. AIAA 2021–1246.

    Google Scholar 

  8. Sabirzyanov, A.N., Glazunov, A.I., Kirillova, A.N., and Titov, K.S., Simulation of a Rocket Engine Nozzle Discharge Coefficient, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 2, pp. 105–111 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 2, pp. 257–264].

    Google Scholar 

  9. Krioukov, V.G., Abdullin, A.L., Nikandrova, M.V., and Safiullin, I.I., Application of DRGEP and Engagement Methods to the Reduction of Reaction Mechanisms in Calculating Chemically Nonequilibrium Flows in the Nozzles of Flight Vehicles Engines, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 154–157 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 4, pp. 682–686].

    Google Scholar 

  10. Naoumov, V.I., Krioukov, V.G., Abdullin, A.L., and Demin, A.V., Chemical Kinetics in Combustion and Reactive Flows: Modeling Tools and Applications, Cambridge: Cambridge University Press, 2019.

    Book  MATH  Google Scholar 

  11. Kondrat’ev, V.N., Konstanty skorosti gazofaznykh reaktsii (Rate Constants of Gas-Phased Reactions), Moscow: Nauka, 1974.

    Google Scholar 

  12. Glarborg, P., Miller, J.A., and Kee, R.J., Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors, Combustion and Flame, 1986, vol. 65, pp. 177–202.

    Article  Google Scholar 

  13. Bojko, B.T., DesJardin, P.E., and Washburn, E.B., On Modeling the Diffusion to Kinetically Controlled Burning Limits of Micron-Sized Aluminum Particles, Combustion and Flame, 2014, vol. 161, no. 12, pp. 3211–3221.

    Article  Google Scholar 

  14. Pirumov, U.G. and Rosliakov, G.S., Gazovaya dinamika sopel (Gas Dynamics of Nozzles), Moscow: Nauka, 1990.

    Google Scholar 

  15. Pepiot-Desjardins, P. and Pitsch, H., An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms, Combustion and Flame, 2008, vol. 154, no. 1–2, pp. 67–81.

    Article  MATH  Google Scholar 

  16. Lebedev, A.V., Okun, M.V., Baranov, A.E., and Deminski, M.A., Reduction of Chemical Mechanisms of Chemical-Physic Processes Based on Combined Mathematical Methods, Khimicheskaya Fizika i Mezoskopiya, 2011, vol. 13, no. 1, pp. 43–52.

    Google Scholar 

  17. Nagy, T. and Turanyi, T., Reduction of Very Large Reaction Mechanisms Using Methods Based on Simulation Error Minimization, Combustion and Flame, 2009, vol. 156, no. 2, pp. 417–428.

    Article  Google Scholar 

  18. Tianfeeng, L., Yiguang, J., and Chung, K.L., Complex CSP for Chemistry Reduction and Analysis, Combustion and Flame, 2001, vol. 126, no. 1–2, pp. 1445–1455.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Demin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 133 - 139.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryukov, V.G., Abdullin, A.L. & Demin, A.V. Chemically Nonequilibrium Flows of Nitrocellulose Fuel Combustion Products in Aircraft Engine Nozzles. Russ. Aeronaut. 64, 503–510 (2021). https://doi.org/10.3103/S1068799821030181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030181

Keywords

Navigation