Skip to main content
Log in

Inner Separation Area Precession as a Source for Initiating the Detonation or Quasi-Detonation Combustion in an Ejector Pulsejet Engine

  • AIRCRAFT AND ROCKET ENGINE DESIGN AND DEVELOPMENT
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The study focuses on the condition for appearance of detonation/quasi-detonation combustion in the ejector pulsejet engine. An interpretation of the spherical detonation initiation mechanism is suggested. The spectra of acoustic pulsations accompanying the transition to detonation or quasi-detonation combustion during changes in the gas duct geometry were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Frolov, S.M., Zvegintsev, V.I., Ivanov, V.S., Aksenov, V.S., Shamshin, I.O., Vnuchkov, D.A., Nalivaichenko, D.G., Berlin, A.A., and Fomin, V.M., Continuous Detonation Combustion of Hydrogen: Results of Wind Tunnel Experiments, Fizika Goreniya i Vzryva, 2018, vol. 54, no. 3, pp. 116–123.

    Google Scholar 

  2. Egoryan, A.D. and Kraiko, A.N., Comparison of Air-Jet Engines with Slow and Detonation Combustion, Izv. Rossiyskoi Akad. Nauk. Mekhanika Zhidkosti i Gaza, 2020, no. 2, pp. 123–137.

    MATH  Google Scholar 

  3. Frolov, S.M., Aksenov, V.S., and Basevich, V.Ya., Model Demonstrator of Air-Jet Pulse Detonation Engine on Liquid Fuel in Impulsnye Detonaczionnye Dvigateli (Pulse Detonation Engines), Moscow: Torus Press, 2006, pp. 257–272.

    Google Scholar 

  4. Migalin, K.V., Sidenko, K.A., Migalin, K.K., and Egorov, A.G., Stvolovye i ezhektornye pul’siruyushchie vozdushno-reaktivnye dvigateli. Rabota v detonatsionnom rezhime (Barrel and Ejector Pulsed Air Jet Engines. Operation in Detonation Mode), Tolyatti: TGU, 2019.

    Google Scholar 

  5. Jost, W., Explosion and Combustion Processes in Gases, New York–London: McGraw-Hill, 1946.

    Google Scholar 

  6. Aksenov, V.S., Detonation Initiation in Homogeneous Mixtures and Atomizations of Liquid Fuel by Consecutive Electric Discharges, Cand. Sc. (Phys.–Math.) Dissertation, Moscow, 2005.

  7. Gupta, A.K., Lilley, D.G., and Syred, N., Swirl Flows, England: Abacus Press, Tunbridge Wells, 1984.

    Google Scholar 

  8. Knysh, Yu.A. and Uryvskii, A.F., Model of Vortex Core Precession, Izv. Vuz. Av. Tekhnika, 1984, vol. 27, no. 3, pp. 41–44.

    Google Scholar 

  9. Migalin, K.V., Sidenko, K.A., and Migalin, K.K., Ezhektornye pul’siruyushchie vozdushno-reaktivnye dvigateli (Ejector Pulsed Air Jet Engines), Tolyatti: Spect, 2020.

    Google Scholar 

  10. Trusov, P.V. and Charntsev, D.A., Numerical Modeling of Thermal State of Noise and Heat Protection Casing of Gas Turbine Unit, Vestnik Samarskogo Gos. Univ., 2010, vol. 4(78), p. 117–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Migalin.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 113 - 118.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migalin, K.V., Boichuk, I.P. & Sidenko, K.A. Inner Separation Area Precession as a Source for Initiating the Detonation or Quasi-Detonation Combustion in an Ejector Pulsejet Engine. Russ. Aeronaut. 64, 481–487 (2021). https://doi.org/10.3103/S1068799821030156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030156

Keywords

Navigation