Skip to main content
Log in

Impact of High-Temperature Effects on Shock Inclination Angle in Super- and Hypersonic Flow around Sharp Cone

  • AERO- AND GAS-DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Numerical simulation of a super- and hypersonic flow of an inviscid gas around a sharp cone is performed taking into account high-temperature effects. The numerical implementation of a computational procedure designed to find stationary solutions of the gas dynamics equations describing flows around a cone with the real gas properties is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Krasnov, N.F., Aerodinamika tel vrashcheniya (Aerodynamics of Rotation Bodies), Moscow: Mashinostroenie, 1964.

    Google Scholar 

  2. Kraiko, A.N., and Tillyaeva, N.I., Axisymmetric-Conical and Locally Conical Flows without Swirling, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2014, vol. 55, no. 2, pp. 282–298.

    MathSciNet  Google Scholar 

  3. Isakova, N.P., Kraiko, A.N., Pyankov, K.S., and Tillyaeva, N.I., The Amplification of Weak Shock Waves in Axisymmetric Supersonic Flow and Their Reflection from an Axis of Symmetry, Prikladnaya Matematika i Mekhanika, 2012, vol. 76, no. 4, pp. 451–465.

    MathSciNet  Google Scholar 

  4. Zubin, M.A., Ostapenko, N.A., and Chulkov, A.A., Conical Gas Flows with Shock Waves and Turbulent Boundary Layer Separation, Izv. RAN. Mekhanika Zidkosti i Gaza, 2012, vol. 47, no. 2, pp. 263–280.

    MathSciNet  MATH  Google Scholar 

  5. Khabirov, S.V., Swirled Flows and Their Generalizations, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2012, vol. 53, no. 4, pp. 500–508.

    MathSciNet  MATH  Google Scholar 

  6. Poplavskaya, T.V., and Mironov, S.G., Numerical Simulation of Hypersonic Flow around a Sharp Cone, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2001, vol. 42, no. 3, pp. 420–426.

    MATH  Google Scholar 

  7. Zheleznyakova, A.L., and Surzhikov. S.T., Na puti k sozdaniyu virtual’noi modeli GLA (In the Way of the Hypersonic Aircraft Virtual Model Creation), Moscow: IPMekh RAN, 2013.

    Google Scholar 

  8. Ding, F., Liu, J., Shen, Ch-b., Liu, Z., Chen, Sh-h., and Fu, X., An Overview of Research on Waverider Design Methodology, Acta Astronautica, 2017, vol. 140, pp. 190–205.

    Article  Google Scholar 

  9. Mazhul’, I.I., Comparative Analysis of the Aerodynamics of Wave-Boats Built on the Basis of Conical and Plane Flows, Teplofizika i Aeromekhanika, 2007, vol. 14, no. 1, pp. 99–112.

    Google Scholar 

  10. Mazhul’, I.I., and Rakhimov, R.D., Numerical Investigation of Off-Design Regimes of Flow Past Waveriders on the Basis of Axisymmetric Conical Flows, Izv. RAN. Mekhanika Zidkosti i Gaza, 2007, vol. 42, no. 2, pp. 302–309.

    MATH  Google Scholar 

  11. Blokhin, A.M., and Biberdorf, E.A., Numerical Resolution of the Problem for a Stationary Real Gas Flow Over a Cone, Vychislitel’nye Tekhologii, 2015, vol. 20, no. 2, pp. 29–43.

    MATH  Google Scholar 

  12. Biberdorf, E.A., and Blokhin, A.M., Real Gas Flow about a Round Cone, Journal of Physics: Conference Series, 2017, vol. 894.

  13. Tukinakov, D.A., Numerical Simulation of Shock-Wave Flows in a Gas Suspension with Inhomogeneous Concentration of the Dispersed Phase, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 1, pp. 59–65 [Russian Aeronautics (Engl. Transl.), 2019, vol. 62, no. 1, pp. 59–65].

    Google Scholar 

  14. Golomazov, M.M., Features of Numerical Simulation of a Hypersonic Gas Flow around Blunt Bodies, Fiziko-Khimicheskaya Kinetika v Gazovoi Dinamike, 2011, vol. 2, p. 11.

    Google Scholar 

  15. Volkov, K.N., Emel’yanov, V.N., and Karpenko, A.G., Numerical Simulation of Gas Dynamic and Physical-Chemical Processes in Hypersonic Flows Past Bodies, Vychislitel’nye Metody i Programmirovanie, 2017, vol. 18, no. 4, pp. 387–405.

    Article  Google Scholar 

  16. Emel’yanov, V.N., Karpenko, A.G., and Volkov, K.N., Simulation of Hypersonic Flows with Equilibrium Chemical Reactions on Graphics Processor Units, Acta Astronautica, 2019, vol. 163, part A, pp. 259–271.

    Article  Google Scholar 

  17. Deryugin, Yu.N., Zhuchkov, R.N., Zelenskii, D.K., Kozelkov, A.S., Sarazov, A.S., Kudimov, N.F., Lipnitskii, Yu.M., Panasenko, A.V., and Safronov, A.V., Validation Results for the LOGOS Multifunction Software Package in Solving Problems of Aerodynamics and Gas Dynamics for the Lift-Off and Injection of Launch Vehicles, Matematicheskoe Modelirovanie, 2014, vol. 26, no. 9, pp. 83–95.

    MathSciNet  MATH  Google Scholar 

  18. Kozelkov, A.S., Kurulin, V.V., Lashkin, S.V., Shagaliev, R.M., and Yalozo, A.V., Investigation of Supercomputer Capabilities for the Scalable Numerical Simulation of Computational Fluid Dynamics Problems in Industrial Applications, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, vol. 56, no. 8, pp. 1506–1516.

    MathSciNet  MATH  Google Scholar 

  19. Kraiko, A.N., and Makarov, V.E., Explicit Analytic Formulas Defining the Equilibrium Composition and Thermodynamic Functions of Air for Temperatures from 200 to 20000 K, Teplofizika Vysokikh Temperatur, 1996, vol. 34, no. 2, pp. 202–213.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was supported by the Russian Science Foundation (project 19-71-10019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Volkov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 99 - 107.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N., Karpenko, A.G. et al. Impact of High-Temperature Effects on Shock Inclination Angle in Super- and Hypersonic Flow around Sharp Cone. Russ. Aeronaut. 64, 466–475 (2021). https://doi.org/10.3103/S1068799821030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030132

Keywords

Navigation