Skip to main content
Log in

Onboard Iterative Algorithm of Defining the Parameters of Keplerian Orbits Based on Solving the Orbital Motion Equations in Velocity Reference Frame

  • FLIGHT DYNAMICS AND CONTROL OF FLIGHT VEHICLES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

We suggest a determined iterative algorithm of defining the planar parameters of a spacecraft Keplerian orbit in the velocity reference frame. Analytical relations for creating the iterative algorithm and the numeric example of defining parameters of a spacecraft Keplerian orbit are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mikrin, E.A. and Mikhailov, M.V., Navigatsiya kosmicheskikh apparatov po izmereniyam ot global’nykh sputnikovykn navigatsionnykh sistem (Spacecraft Navigation by Measurements of Global Satellite Navigation Systems), Moscow: Bauman MSTU, 2017.

    Google Scholar 

  2. Sokolov, N.L. and Zakharov, P.A., Autonomous Identification of Orbits Parameters of Potentially Dangerous Space Objects by Onboard Facilities, Vestnik Moskovskogo Gosudarstvennogo Universiteta Lesa – Lesnoi Vestnik, 2016, vol. 20, issue 2, pp. 214–224.

    Google Scholar 

  3. Battin, R.H., Astronautical Guidance, New York: McGraw-Hill Book Company, 1964.

    Google Scholar 

  4. Sangra, D. and Fantino, E., Review of Lambert’s Problem, Proc. of 25th International Symposium on Space Flight Dynamics (ISSFD-2015), Munich, Germany, 2015, pp. 1–15.

    Google Scholar 

  5. Bando, M. and Yamakawa, H., New Lambert Algorithm Using the Hamilton–Jacobi–Bellman Equation, Journal of Guidance, Control and Dynamics, 2010, vol. 33, issue 3, pp. 1000–1008.

    Article  Google Scholar 

  6. Arora, N. and Russell, R.P., A Fast and Robust Multiple Revolution Lambert Algorithm Using a Cosine Transformation, URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.711.9398.

  7. Bombardelli, C., Roa, J., and Gonzalo, J., Approximate Analytical Solution of the Multiple Revolution Lambert’s Targeting Problem, Journal of Guidance, Control and Dynamics, 2018, vol. 41, issue 2, pp. 1–10.

    Google Scholar 

  8. Sokolov, N.L. and Sokolov, A.P., On one Analytic Method of Defining Elements of Keplerian Orbits by Two Positions of a Spacecraft, Kosmicheskie Issledovaniya, 1989, vol. 27, issue 6, pp. 803–807.

    Google Scholar 

  9. Burdaev, M.N., A Universal Equation of Flight Duration between Two Points of Central Field of Gravity, Programmnye Sistemy: Teoriya i Prilozheniya, 2012, vol. 3, issue 3 (12), pp. 69–76.

    Google Scholar 

  10. Zubov, N.E., Mikrin, E.A., and Ryabchenko, V.N., Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatel’nykh apparatov (Matrix Methods in the Theory and Practice of Aircraft Automatic Control Systems), Moscow: MGTU im. N.E. Baumana, 2016.

    Google Scholar 

  11. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., and Proletarskii, A.V., Analytical Synthesis of Control Laws for Lateral Motion of Aircraft, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 14–20 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 263–270].

    Google Scholar 

  12. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.S., and Ryabchenko, V.N., Stabilization of Coupled Motions of an Aircraft in the Pitch-Yaw Channels in the Absence of Information About the Sliding Angle: Analytical Synthesis, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, no. 1, pp. 95–105 [J. of Computer and Systems Sciences International (Engl. Transl.), vol. 54, no. 1, pp. 93–103].

    MathSciNet  MATH  Google Scholar 

  13. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.S., and Ryabchenko, V.N., Output Control of the Longitudinal Motion of a Flying Vehicle, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, no. 5, pp. 164–175 [J. of Computer and Systems Sciences International (Engl. Transl.), vol. 54, no. 5, pp. 825–837].

    MathSciNet  MATH  Google Scholar 

  14. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., and Fomichev, A.V., Synthesis of Control Laws for Aircraft Lateral Motion at the Lack of Data on the Slip Angle: Analytical Solution, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 61–70 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 1, pp. 64–73].

    Google Scholar 

  15. Romanenko, L.G., Romanenko, A.G., and Samarova, G.G., Aircraft Longitudinal Control without a Pitch Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 25–29 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 361–367].

    Google Scholar 

  16. Romanenko, L.G., Samarova, G.G., and Romanenko, A.G., Aircraft Lateral-Directional Control without a Roll Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 2, pp. 19–23 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 2, pp. 134–140].

    Google Scholar 

  17. Zubov, N.E., Lapin, A.V., and Ryabchenko, V.N., Analytical Synthesis of a Modal Controller by Output Vector for Attitude Control of a Descent Module during Its Descent in the Earth’s Atmosphere, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 3, pp. 46–59 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 3, pp. 401–416].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zubov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2021, No. 3, pp. 67 - 74.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, N.E., Ryabchenko, V.N. & Lapin, A.V. Onboard Iterative Algorithm of Defining the Parameters of Keplerian Orbits Based on Solving the Orbital Motion Equations in Velocity Reference Frame. Russ. Aeronaut. 64, 432–440 (2021). https://doi.org/10.3103/S1068799821030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799821030090

Keywords

Navigation