Skip to main content
Log in

A Method for Calculating Residual Technological Strain and Deflection of a Single Curvature Composite Shell Reinforced by Stringers

  • AIRCRAFT PRODUCTION TECHNOLOGY
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A mathematical model of deformation and a method for calculating the influence of parameters on residual technological strain, tangential displacements, and the deflection function of a single curvature composite shell reinforced by stringers are presented. The parameters include the physical and mechanical characteristics of the material, difference between the curing and operating temperatures as well as the geometry and temperature strains of the tooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Bitkina, E.V., Pidodnya, V.G., and Bitkina, O.V., Investigation of the Effect of Technological Factors on the Residual Stresses in Fiber Composites, Vestnik SamGTU. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), pp. 59–66.

    MATH  Google Scholar 

  2. Bitkina, O.V., Methods for Studying the Effect of Technological Errors on Stress-Strain State of Multilayer Composite Panels, Izvestiya SamNTs RAN, 2012, vol. 14, issue 4-2, pp. 569–576.

    Google Scholar 

  3. Bitkina, O.V., Development of a Method for Calculating the Stress-Strain State of Multilayer Plates Made of Fibrous Composite Materials Taking into Account Technological Factors, Cand. Sc. (Eng.) Dissertation, Samara, 2013, p. 19.

  4. Boitsov, B.V., Gavva, L.M., Endogur, A.I., and Firsanov, V.V., Stress-Strain State and Buckling Problems of Structurally-Anisotropic Aircraft Panels Made of Composite Materials in View of Production Technology, Izv. Vuz. Av. Tekhnika, 2018, vol. 61, no. 4, pp. 20–27 [Russian Aeronautics (Engl. Transl.), vol. 61 no. 4, pp. 534–532.

    Google Scholar 

  5. Belov, V.K., Zheleznov, L.P., and Ognyanova, T.S., Research on Nonlinear Deformation and Stability of an Advanced Aircraft Fuselage Composite Section under Pure Bending, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 33–40 [Russian Aeronautics (Engl. Transl.), vol. 60 no. 4, pp. 514–522].

    Google Scholar 

  6. Wang, Z.J., Kang, L.H., Kretov, A.S., and Huang, S., Strength Design Model of Thin-Walled Structures, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 1, pp. 116–122 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 126–133].

    Google Scholar 

  7. Klochkov, Yu.V., Nikolaev, A.P., Vakhnina, O.V., and Kiseleva, T.A., Stress–Strain Analysis of a Thin-Shell Part of Fuselage Using a Triangular Finite Element with Lagrange Multipliers, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 20–26 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 316–323].

    Google Scholar 

  8. Abdyushev, A.A., The Principle of Constructing a Computation Model of Equilibrium Ribbed Stiffened Shells in Linear Displacement-Based FEM Analysis, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 2, pp. 20–26 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 2, pp. 117–125].

    Google Scholar 

  9. Vekua, I.N., Nekotorye obshchie metody postroeniya razlichnykh variantov teorii obolochek (Some General Methods for Constructing Various Variants of the Shell Theory], Moscow: Nauka, Fizmatlit, 1982, 288 p.

    Google Scholar 

  10. Obraztsov, I.F., Vasil’ev, V.V., and Bunakov, V.A., Optimal’noe armirovanie obolochek vrashcheniya iz kompozitsionnykh materialov (Optimal Reinforcement of Rotation Shells Made of Composite Materials), Moscow: Mashinostroenie, 1977, 143 p.

    Google Scholar 

  11. Sidorov, I.N., Kiauka, M.Yu., Konstantinov, D.Yu., and Filippova, M.S., Determination of Residual Technological Tangential Displacement Field and the Deflection Function of a Single Curvature Composite Shell, Nauchno-Tekhnicheskii Vestnik Povilzh’ya, 2018, no. 12, pp. 97–105.

    Google Scholar 

  12. Sidorov, I.N., Kiauka, M.Yu., Filippova, M.S., and Enskaya, A.I., A Method for Calculating the Residual Technological Deformations of a Complex Single Curvature Shell, Nauchno-Tekhnicheskii Vestnik Povilzh’ya, 2018, no. 12, pp. 106–116.

    Google Scholar 

  13. Gorelov, A.V. and Sidorov, I.N., Raschet napryazhenno-deformirovannogo i predel’nogo sostoyaniya kompozitnoi lopasti nesushchego vinta vertoleta “ANSAT” (Calculation of the stress-strain and limit state of the ANSAT helicopter composite rotor blade), Available from VINITI, 2006, Kazan, no. 946-V2006.

  14. Gorelov, A.V. and Sidorov, I.N., A Lower Bound Estimate of the Critical Load for Helicopter Main Rotor Composite Blade According to the Limit Equilibrium Theory. Analysis Results, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 4, pp. 12–14 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 4, pp. 341–345].

    Google Scholar 

  15. Gorelov, A.V., Nikolaev, E.I., and Sidorov, I.N., Calculation of a Safety Factor of Damaged Composite Main Rotor Blade According to Limit Equilibrium Theory, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 13–19 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 308–315].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sidorov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 169 - 179.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, I.N., Girfanov, A.M., Fedyaev, V.L. et al. A Method for Calculating Residual Technological Strain and Deflection of a Single Curvature Composite Shell Reinforced by Stringers. Russ. Aeronaut. 63, 746–757 (2020). https://doi.org/10.3103/S1068799820040248

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820040248

Keywords

Navigation