Skip to main content
Log in

Pressure and Heat Flux Oscillations Induced by Gas-Dynamic Interaction between a High Inertia Particle and a Shock Layer

  • AERO- AND GAS- DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

Oscillatory flow and heat transfer regimes arising from the gas-dynamic interaction between a high-inertial particle and a shock layer in a supersonic flow around bodies are under numerical research. Detailed space-time flow patterns were obtained using high-resolution adaptive grids and parallelization of computations using the graphic processing units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Tukmakov, D.A., Numerical Simulation of Shock-Wave Flows in a Gas Suspension with Inhomogeneous Concentration of the Dispersed Phase, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 1, pp. 54–59 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 1, pp. 59–65].

    Google Scholar 

  2. Zuev, Yu.V., Lepeshinskii, I.A., and Guzenko, A.A., Influence of Particle Inertance on Motion Characteristics of a Two-Phase Jet, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 70–74 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 210–214].

    Google Scholar 

  3. Varaksin, A.Yu., Gas-Solid Flows Past Bodies, Teplofizika Vysokikh Temperatur, 2018, vol. 56, no. 2, pp. 282–305 [High Temperature (Engl. Transl.), 2018, vol. 56, no. 2, pp. 275–295].

    Google Scholar 

  4. Vasilevskii, E.B., Osiptsov, A.N., Chirikhin, A.V., and Yakovleva, L.V., Heat Exchange on the Front Surface of a Blunt Body in a High-Speed Flow Containing Low-Inertia Particles, Inzhenerno-Fizicheskii Zhurnal, 2001, vol. 74, no. 6, pp. 34–42 [Journal of Engineering and Physics Journal (Engl. Transl.), 2001, vol. 74, no. 6, pp. 1399–1411].

    Google Scholar 

  5. Molleson, G.V. and Stasenko, A.L., Gasdynamic Acceleration of Microparticles and Their Interaction with a Solid Body, Teplofizika Vysokikh Temperatur, 2017, vol. 74, no. 6, pp. 742–749 [High Temperature (Engl. Transl.), 2017, vol. 55, no. 6, pp. 906–913].

    Google Scholar 

  6. Oesterlé, B., Volkov, A.N., and Tsirkunov, Yu.M., Numerical Investigation of Two-Phase Flow Structure and Heat Transfer in a Supersonic Dusty Gas Flow over a Blunt Body, Progress in Flight Physics, 2013, no. 5, pp. 441–456.

    Article  Google Scholar 

  7. Ershova, T.V., Mikhatulin, D.S., Reviznikov, D.L., Sposobin, A.V., and Vinnikov, V.V., Numerical Simulation of Heat and Mass Transfer between Heterogeneous Flow and an Obstacle, Computational Thermal Sciences, 2011, vol. 3, no. 1, pp. 15–30.

    Article  Google Scholar 

  8. Reviznikov, D.L. and Sukharev, T.Yu., Hypersonic Flow around Blunt Bodies in the Atmosphere of the Earth and Mars. Comparative Analysis of Mathematical Models, Teplovye Protsessy v Tekhnike, 2018, vol. 10, nos. 1–2, pp. 5–15.

    Google Scholar 

  9. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., A Change in the Structure of a Flow under the Action of Highly Inertial Particle when a Hypersonic Heterogeneous Flow Passes over a Body, Teplofizika Vysokikh Temperatur, 2018, vol. 56, no. 6, pp. 908–913 [High Temperature (Engl. Transl.), 2018, vol. 56, no. 6, pp. 884–889].

    Google Scholar 

  10. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., Oscillatory Flow Regimes Resulting from the Shock Layer—Particle Interaction, High Temperature, 2020, vol. 58, no. 2, pp. 278–283.

    Article  Google Scholar 

  11. Fleener, W.A. and Watson, R.H., Convective Heating in Dust-Laden Hypersonic Flows, Proc. of the 8th Thermophysics Conference, 1973, Palm Springs, AIAA Paper no. 73-761.

    Google Scholar 

  12. Holden, M.S., Gustafson, G.Q., Duryea, G.R., and Hudack, L.T., An Experimental Study of Particle-Induced Convective Heating Augmentation, Proc. of the AIAA 9th Fluid and Plasma Dynamics Conference, 1976, San Diego, AIAA Paper no. 76-320.

    Google Scholar 

  13. Vladimirov, A.S., Ershov, I.V., Makarevich, G.A., and Khodtsev, A.V., Experimental Investigation of the Process of Interaction Between Heterogeneous Flows and Flying Bodies, Teplofizika Vysokikh Temperatur, 2008, vol. 46, no. 4, pp. 563–569 [High Temperature (Engl. Transl.), 2008, vol. 46, no. 4, pp. 512–517].

    Google Scholar 

  14. Molchanov, A.M., Matematicheskoe modelirovanie zadach gazodinamiki i teplomassoobmena (Mathematical Modeling of Gas Dynamics and Heat and Mass Transfer Problems), Moscow: MAI, 2013.

    Google Scholar 

  15. Kitamura, K. and Shima, E., Towards Shock-Stable and Accurate Hypersonic Heating Computations: A New Pressure Flux for AUSM-Family Schemes, Journal of Computational Physics, 2013, vol. 245, pp. 62–83.

    Article  MathSciNet  Google Scholar 

  16. Kotov, D.V. and Surzhikov, S.T., Calculation of Viscous and Inviscid Gas Flows on Unstructured Grids Using the AUSM Scheme, Vychislitel’naya Mekhanika Sploshnykh Sred, 2011, vol. 46, no. 1, pp. 36–54 [Fluid Dynamics (Engl. Transl.), 2011, vol. 46, no. 5, pp. 809–825].

    MathSciNet  Google Scholar 

  17. Hayder, M.E., Hu, F.Q., and Hussaini, M.Y., Towards Perfectly Absorbing Boundary Conditions for Euler Equations, NASA CR-201689, ICASE, Report no. 97-25, URL: https://core.ac.uk/reader/42773650.

  18. Holden, M.S., Experimental Studies of Separated Flows at Hypersonic Speeds. Part I: Separated Flows over Axisymmetric Spiked Bodies, AIAA Journal, 1966, vol. 4, no. 4, pp. 591–599.

    Article  Google Scholar 

  19. Zapryagaev, V.I. and Kavun, I.N., Experimental Study of the Reverse Flow in the Forward Separation Region in a Pulsating Flow Around a Spiked Body, Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, no. 4, pp. 492–500.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The research was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation, project number FSFF-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Reviznikov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 108 - 115.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sposobin, A.V., Reviznikov, D.L., Ivanov, I.E. et al. Pressure and Heat Flux Oscillations Induced by Gas-Dynamic Interaction between a High Inertia Particle and a Shock Layer. Russ. Aeronaut. 63, 677–685 (2020). https://doi.org/10.3103/S1068799820040157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820040157

Keywords

Navigation