Skip to main content
Log in

Experimental and Numerical Investigation of the Mixing Ratio for Various Vane Swirlers of the Combustion Chamber of a Gas Turbine Engine

  • AERO- AND GAS- DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The paper investigates the swirling flow behind the GTE combustion chamber swirler with blades installed under different angles. The mixing ratio in the flow is experimentally analyzed and compared with the estimated values obtained by a numerical approach and using various models of turbulent viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Mingazov, B.G., Aleksandrov, Yu.B., Kosterin, A.V., and Tokmovtsev, Yu.V., Protsessy goreniya i avtomatizirovannoe proektirovanie kamer sgoraniya GTD i GTU (Combustion Processes and Automated Design of Combustion Chambers of GTE and GTU), Kazan: Izd. Kazan. Gos. Tekh. Univ., 2015.

    Google Scholar 

  2. Akhmedov, R.B., Balagula, T.B., Rashidov, F.K., and Sakaev, A.Yu., Aerodinamika zakruchennoy strui (Aerodynamics of the Swirling Jet), Akhmedov, R.B., Ed., Moscow: Energiya, 1977.

    Google Scholar 

  3. Kutateladze, S.S., Volchkov, E.P., and Terekhov, V.I., Aerodinamika i teplomassobmen v ogranichennykh vikhrevykh potokakh (Aerodynamics and Heat and Mass Transfer in Confined Vortex Flows), Novosibisk: ITF, 1987.

    Google Scholar 

  4. Gupta, A.K., Lilley, D.G., and Syred, N., Swirl Flows, Tunbridge Wells, Kent: Abacus Press, 1984.

    Google Scholar 

  5. Dekterev, A.A., Mathematical Modeling of Swirling Flows for Industrial Applications, Tezisy dokladov VI Vserossiyskoi konferentsii s mezhdunarodnym uchastiem “Teplomassoobmen i gidrodinamika v zakruchennykh potokakh” (Theses of Reports of the 6th Int. Conf. “Heat Transfer and Aerodynamics in Swirled Flows”), 21–23 Nov., 2017, Novosibirsk: ITF, 2017, p. 16.

    Google Scholar 

  6. Kornev, N., Samarbaksh, S., Dhone, M., Feder, D., and Abdel Maksud, M., Problems of Simulation of Strong Concentrated Vortex Structures Using Grid Free and Grid Based Techniques, Tezisy dokladov VI Vserossiyskoi konferentsii s mezhdunarodnym uchastiem “Teplomassoobmen i gidrodinamika v zakruchennykh potokakh” (Theses of Reports of the 6th Int. Conf. “Heat Transfer and Aerodynamics in Swirled Flows”), 21–23 Nov., 2017, Novosibirsk: ITF, 2017, p. 19.

    Google Scholar 

  7. Dekterev, D.A., Platonov, D.V., and Minakov, A.V., An Experimental and Numerical Study of the Flow in the Model of HPP Hydro Turbine, Tezisy dokladov V Vserossiyskoi konferentsii s mezhdunarodnym uchastiem “Teplomassoobmen i gidrodinamika v zakruchennykh potokakh” (Theses of Reports of the 5th Int. Conf. “Heat and Mass Transfer and Hydrodynamics in Swirled Flows”), Kazan, 19–22 Oct., 2015, St. Petersburg: Svoe Izdatel’stvo, 2015, p. 164–165.

    Google Scholar 

  8. Krasheninnikov, S.V. and Savchenko, O.V., Simulation of Swirling Mixing in the ANSYS CFX Program, Vestnik SGAU, 2013, no. 3-2 (41), pp. 128–132.

    Google Scholar 

  9. Tret’yakov, V.V., Sviridenkov, A.A., and Toktaliev, P.D., Fuel Atomization and Mixing in Unsteady Swirling Flows Behind the Gas-Dynamic Stabilizer, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 3, pp. 106–112 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 3, pp. 434–441].

    Google Scholar 

  10. Tret’yakov, V.V., Sviridenkov, A.A., and Toktaliev, P.D., Simulation of Flow and Mixture Formation Nonstationarity in Combustion Chambers, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 1, pp. 33–37 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 1, pp. 44–49].

    Google Scholar 

  11. Arbuzov, M.A. and Zharkovskii, A.A., Mekhanika zhidkosti i gaza. Raschet vyazkogo techeniya v tipovykh elementakh gidromashin (Mechanics of Fluid and Gas. Calculation of Viscosity Flow in Typical Elements of Hydraulic Machines), St. Petersburg: Izd. Politekhn. Univ., 2016.

    Google Scholar 

  12. Kutsenko, Yu.G., Chislennye metody otsenki emissionnykh kharakteristik kamer sgoraniya gazoturbinnykh dvigatelei (Numerical Methods for Estimation of the Emission Characteristics of GTE Combustion Chambers), Ekaterinburg; Perm’: UrO RAN, 2006.

    Google Scholar 

  13. Sabirzyanov, A.N., Yavkin, V.B., Aleksandrov, Yu.B., Markushin, A.N., and Baklanov, A.V., Gas-Turbine Engine Combustor Emission Simulation, Vestnik KGTU im A.N.Tupoleva, 2014, no. 2, pp. 62–70.

    Google Scholar 

  14. Mingazov, B.G. and Yavkin, V.B., Process Modeling in the GTE Combustors, Izv. Vuz. Av. Tekhnika, 1995, vol. 38, no. 1, pp. 47–50 [Russian Aeronautics (Engl. Transl.), vol. 38, no. 1, pp. 43–46].

    Google Scholar 

  15. Chenoweth, J.D., Kannepalli, Ch., Arunajatesan, S., and Hosangadi, A., Modeling Swirling Jet Flows Using a Hybrid RANS/LES Methodology, Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Hartford, CT, July 21-23, 2008, vol. 4, pp. 2445–2479.

    Google Scholar 

  16. Chaouat, B., The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows, Flow, Turbulence and Combustion, 2017, vol. 99 (2), p. 279–327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Aleksandrov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 101 - 107.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguen, T.D., Aleksandrov, Y.B., Sulaiman, A.I. et al. Experimental and Numerical Investigation of the Mixing Ratio for Various Vane Swirlers of the Combustion Chamber of a Gas Turbine Engine. Russ. Aeronaut. 63, 669–676 (2020). https://doi.org/10.3103/S1068799820040145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799820040145

Keywords

Navigation