Skip to main content
Log in

Strapdown Inertial Navigation System Transfer Alignment: Algorithmic Features and Simulation Performance Analysis

  • FLIGHT DYNAMICS AND CONTROL OF FLIGHT VEHICLES
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The way of small aircraft strapdown inertial navigation system transfer alignment based on information from the carrier navigation system is considered. Optimal Kalman filter was selected as the main mathematical technique for the proposed method implementation, which showed acceptable accuracy and convergence time in the set task conditions. The main features of SINS transfer alignment algorithm and the results of its operation at complex trajectory simulation are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Andreev, V.D., Teoriya inertsial’noi navigatsii. Avtonomnye sistemy (Theory of Inertial Navigation. Autonomous Systems), Moscow: Nauka, 1966.

    Google Scholar 

  2. Aleshin, B.S., Afonin, A.A., Veremeenko, K.K., Koshelev, B.V., Plekhanov, V.E., Tikhonov, V.A., Tyuvin, A.V., and Chernomorskii, A.I., Orientatsiya i navigatsiya podvizhnykh ob’ektov: sovremennye navigatsionnye tekhnologii (Orientation and Navigation of Moving Objects. Modern Information Technology), Aleshin, B.S., Veremeenko, K.K., and Chernomorskii, A.I., Eds., Moscow: Fizmatlit, 2006.

    Google Scholar 

  3. Veremeenko, K.K., Zheltov, S.Yu., Kim, N.V., Sebryakov, G.G., and Krasilshchikov, M.N., Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatakh (Modern Information Technologies in Navigation and Guidance of Maneuverable Unmanned Aerial Vehicles), Moscow: Fizmatlit, 2009.

    Google Scholar 

  4. Lipton, A., Vystavka inertsial'nykh sistem na podvizhnom osnovanii (Alignment of Inertial Systems on a Moving Base), Moscow: Nauka, 1971.

    Google Scholar 

  5. Veremeenko, K.K., and Savel’ev, V.M., In-flight Alignment of a Strapdown Inertial Navigation System of an Unmanned Aerial Vehicle, Izv. RAN. Teoriya i Sistemy Upravleniya, 2013, no. 1, pp. 111–121 [Journal of Computer and Systems Sciences International, 2013, vol. 52, issue 1, pp. 106–116].

    MATH  Google Scholar 

  6. Savel’ev, V.M. and Antonov, D.A., The Initial Estimation of a Strapdown Inertial Navigation System of an Unmanned Aerial Vehicle on a Moving Basis, Trudy MAI, 2011, issue 45, URL: https://mai.ru/upload/iblock/636/vystavka-besplatformennoy-inertsialnoy-navigatsionnoy-sistemy-bespilotnogo-letatelnogo-apparata-na-podvizhnom-osnovanii.pdf.

  7. Titterton, D.H. and Weston, J.L., Strapdown Inertial Navigation Technology (IEE Radar, Sonar, Navigations and Avionics), URL: http://www.mecinca.net/papers/DRONES_IMU/Indice_libro_StarpdownTech.pdf.

  8. Tekinalp, O. and Ozemre, M., Artificial Neural Networks for Transfer Alignment and Calibration of Inertial Navigation Systems, Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug. 6–9, 2001, AIAA 2001-4406.

    Google Scholar 

  9. Graham, W. and Shortelle, K., Advanced Transfer Alignment for Inertial Navigators (A-TRAIN), Proc. of the National Technical Meeting of the Institute of Navigation, Jan. 18–20, 1995, Anaheim, USA, pp. 113–124.

    Google Scholar 

  10. Sokolov, S.V., Pogorelov, V.A., and Shatalov, A.B., Solving the Autonomous Initial Navigation Task for Strapdown Inertial Navigation System on the Perturbed Basis Using Rodriguez–Hamilton Parameters, Izv. Vuz. Av. Tekhnika, 2019, vol. 62, no. 1, pp. 39–47 [Russian Aeronautics (Engl. Transl.), vol. 62, no. 1, pp. 42–51].

    Google Scholar 

  11. GOST (State Standard) 20058-80. Aircraft Dynamics in Atmosphere. Terms, definitions, and Symbols, URL: http://docs.cntd.ru/document/gost-20058-80.

  12. Antonov, D.A., Zharkov, M.V., Kuznetsov, I.M., Lunev, E.M., and Pron’kin, A.N., Unmanned Aerial Vehicle Positioning Based on Photographic Image and Inertial Measurements, Trudy MAI, 2016, vol. 91, URL: http://trudymai.ru/eng/published.php?ID=75632.

    Google Scholar 

  13. Rivkin, S.S., Ivanovskii, R.I., and Kostrov, A.V., Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical Optimization of Navigation Systems), Leningrad: Sudostroenie, 1976

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The work was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (topic no. FSFF-2020-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Veremeenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2020, No. 4, pp. 57 - 64.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veremeenko, K.K., Zharkov, M.V., Kuznetsov, I.M. et al. Strapdown Inertial Navigation System Transfer Alignment: Algorithmic Features and Simulation Performance Analysis. Russ. Aeronaut. 63, 618–626 (2020). https://doi.org/10.3103/S106879982004008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106879982004008X

Keywords

Navigation