Russian Aeronautics

, Volume 61, Issue 3, pp 355–362 | Cite as

On the Non-coplanar Transfer of Type II between Two Circular Orbits

  • D. A. GrishkoEmail author
  • B. O. Vasil’kov
Flight Dynamics and Control of Flight Vehicles


The paper regards two-impulse transfer from a low parking orbit into a circular orbit with the altitude less than 36 000 km, while the inclination correction is carried out with each maneuver. An approximate formula is proposed capable of evaluating analytically the optimal value of the first correction of inclination; the corresponding accuracy data are given. Examples are provided to show the operational efficiency of an optimal non-coplanar transfer of the type II with injections of satellites into various target orbits from Russian launch sites with due account of the available launch azimuths.


non-coplanar two-impulse transfer Hohmann transfer optimal inclination correction total characteristic velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Norbury, J.W., Perspective on Space Radiation for Space Flights in 2020–2040, Advances in Space Research, 2011, vol. 47, no. 4, pp. 611–621.CrossRefGoogle Scholar
  2. 2.
    Hohmann, W., Die Erreichbarkeit der Himmelskörper. München, Berlin, Oldenbourg: Verlag, 1925.Google Scholar
  3. 3.
    Okhotsimskii, D.E. and Sikharulidze, Yu.G., Osnovy mekhaniki kosmicheskogo poleta (Fundamentals of Space Flight Mechanics), Moscow: Nauka, 1990.Google Scholar
  4. 4.
    Baranov, A.A., Manevrirovanie kosmicheskikh apparatov v okresnosti krugovoi orbity (Spacecraft Manoeuvres in the Vicinity of a Circular Orbit), Moscow: Sputnik+, 2016.Google Scholar
  5. 5.
    Ivashkin, V.V., Optimizatsiya kosmicheskikh manevrov pri ogranicheniyakh na rasstoyaniya do planet (Optimization of Space Manoeuvres under Constraints on Planets Distance), Moscow: Nauka, 1975.Google Scholar
  6. 6.
    Spacecraft Launches, Novosti Kosmonavtiki, 2014, vol. 24, no. 2 (373), p.63.Google Scholar
  7. 7.
    Komarov, I.A., Milovanov, A.G., and Chmarov, K.V., Vostochny Launch Site—the Future of Russian Spaceflight, Kosmicheskaya Tekhnika i Tekhnologii, 2015, no. 3(10), pp. 3–14.Google Scholar
  8. 8.
    Wood, L., Lou, Y., and Olusola, O., Revisiting Elliptical Satellite Orbits to Enhance the O3b Constellation, Journal of the British Interplanetary Society, 2014, vol. 67 (3), pp. 110–118.Google Scholar
  9. 9.
    Ivashkin, V.V. and Belousov, S.V., Trajectories for a Spacecraft Flight to Geostationary Orbit Using the Gravitational Field of the Moon, Izv. Vuz. Fizika, 2013, vol. 56, no. 6–3, pp. 214–216.Google Scholar
  10. 10.
    Ivashkin, V.V. and Golikov, A.R., “Detour” Trajectories for Spacecraft Flight between Earth and Geostationary Orbit Using Moon’s Gravity, Preprint of Keldysh Institute of Applied Mathematics, 2008, no.95.Google Scholar
  11. 11.
    Wiedemann, C., Bendisch, J., Krag, H., Wegener, P., and Rex, D., Modeling of Copper Needle Clusters from the West Ford Dipole Experiments, Proc. of the Third European Conference on Space Debris, 2001, Germany, Darmstadt, pp. 315–320.Google Scholar
  12. 12.
    Appazov, R.F. and Sytin, O.G., Metody proektirovaniya traektorii nositelei i sputnikov Zemli (Methods for Designing the Trajectories of Launch Vehicles and Earth Satellites), Moscow: Nauka, 1987.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations