Russian Aeronautics

, Volume 61, Issue 2, pp 287–292 | Cite as

Peculiarities of Mixture Formation and Ignition of the Fuel Mixture in the Metal Sprayer Chamber

  • A. I. RyazanovEmail author
  • V. S. Egorychev
Aircraft Production Technologies


The paper presents a device for spraying the low-melting metal coating, based on the rocket chamber operation principle. The design of the fuel nozzle, pre-mixing chamber, and radial combustion chamber is considered. The processes of electro-spark ignition of the fuel mixture and the flame front stabilization are described. The choice of the critical section area as a place of the coating material feeding in the high-temperature combustion products flow is substantiated.


rocket chamber metal sprayer tangential jet nozzle spark ignition underexpanded supersonic jet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kitamura, J., Tosaki, T., and Mizuno, H., Dense MoB/CoCr Coatings to Apply to Pot-Roll of Galvanizing Lines in Steel Industries. Proc. Int. Thermal Spray Conference, Busan, 2013, pp. 57–62.Google Scholar
  2. 2.
    Budilov, V.V., Kireev, R.M., and Yagafarov, I.I., Assessment of GTE Parts Precision at the Ion-Plasma Spraying of Coatings, Izv.Vuz. Av. Tekhnika, 2012, vol. 55, no. 2, pp. 65–68 [Russian Aeronautics (Engl. Transl.), vol. 55, no. 2, pp. 203–207].Google Scholar
  3. 3.
    Barvinok, V.A. and Bogdanovich, V.I., Physical and Mathematical Simulation of the Formation of Mesostructure-Ordered Plasma Coatings, Zhurnal Tekhnicheskoi Fiziki, 2012, vol. 82, no. 2, pp. 105–112 [Technical Physics (Engl. Transl.), 2012, vol. 57, no. 2, pp. 262–269].Google Scholar
  4. 4.
    Ryazanov, A.I., Mathematical Model and Numerical Solution of the Process of Heating and Melting of a Traveling Cylinder Fed into a Rocket Chamber, ARPN Journal of Engineering and Applied Sciences, 2014, vol. 9, no. 10, pp. 1859–1865.Google Scholar
  5. 5.
    Zuev, Yu.V., Lepeshinskii, I.A., and Guzenko, A.A., Influence of Particle Inertance on Motion Characteristics of a Two-Phase Jet, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 70–74 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 210–214].Google Scholar
  6. 6.
    Barvinok, V.A. and Bogdanovich, V.I., Physical and Mathematical Simulation of Plasma-Chemical Heterogeneous Synthesis from Plasma Fluxes, Zhurnal Tekhnicheskoi Fiziki, 2008, vol. 78, no. 1, pp. 68–73 [Technical Physics (Engl. Transl.), 2008, vol. 53, no. 1, pp. 64–68].Google Scholar
  7. 7.
    Pervyshin, A.N. and Ryazanov, A.I., Working Process of Gaseous Fuel Metallizator, Vestnik SGAU, 2011, no. 3, part 4, pp.103–109.Google Scholar
  8. 8.
    Zubanov, V.M., Egorychev, V.S., and Shabliy, L.S., Hydrogen-Oxygen Rocket Engine Design Using CFDModeling, Research Journal of Applied Sciences, 2014, vol. 9, no. 10, pp. 660–663.Google Scholar
  9. 9.
    Biryuk, V., Kayukov, S., Zvyagintsev, V., and Lysenko, U., Ways of Speed Increase for Internal Combustion Engine Fuel Injectors, Research Journal of Applied Sciences, 2014, vol. 9, no. 11, pp. 721–724.Google Scholar
  10. 10.
    Krasheninnikov, S.V., Use of the Graphical Analytic Methods of Studying the Combustion Processes in the Internal Combustion Engine Combustion Chamber on the Basis of Similarity Criterion, International Journal of Engineering and Technology, 2014, vol. 6, no. 5, pp. 2375–2381.Google Scholar
  11. 11.
    Orlov, M.Y., Matveev, S.S., Makarov, N.S., and Zubrilin, I.A., Numerical Modeling Problems of Operating Process of Combustion Chambers of GTE and Solution Approaches, ARPN Journal of Engineering and Applied Sciences, 2014, vol. 9, no. 12, pp. 2894–2899.Google Scholar
  12. 12.
    Pervyshin, A.I., Design Fundamentals of Supersonic Jet Generators of the Combustion Products of the Gaseous Fuels and Their Technological Use, Doctoral (Tech.) Dissertation, Samara: SGAU, 1994.Google Scholar
  13. 13.
    Egorychev, V.S., Raschet i proektirovanie smeseobrazovaniya v kamere ZhRD (Calculation and Design of Mixing in a Liquid Rocket Engine Chamber), Samara: SGAU, 2011.Google Scholar
  14. 14.
    Lefebvre, A.H. and Ballal, D.R., Gas Turbine Combustion: Alternative Fuels and Emissions, Boca Raton: CRC Press, 2010.CrossRefGoogle Scholar
  15. 15.
    Mingazov, B.G., Simulation of Processes in Combustion Chambers Based on the Theory of Turbulent Combustion, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 47–51 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 299–303].Google Scholar
  16. 16.
    Shan, Y.G., Shen, C.H., Jia, L.B., and Mostaghimi, J., Modeling of Two-Phase Flow and Heat Transfer in Low-Temperature Oxygen-Fuel Spray Process, Journal of Thermal Spray Technology, 2014, vol. 23, no. 1–2, pp. 14–20.CrossRefGoogle Scholar
  17. 17.
    Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977.Google Scholar
  18. 18.
    Vasiliev, A.P., Kudryavtsev, V.M., Kuznetsov, V.A., Kurpatenkov, D.V., and Obel’nitskii, A.M., Osnovy teorii i rascheta zhidkostnykh raketnykh dvigatelei (Fundamentals of the Theory and Calculation of Liquid Rocket Engines), Moscow: Vysshaya Shkola, 1993.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Samara UniversitySamaraRussia

Personalised recommendations