Skip to main content
Log in

Nonlinear deforming of laminated composite shells of revolution under finite deflections and normal’s rotation angles

  • Structural Mechanics and Strength of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The discretization of the boundary value problem for laminated composite shells is based on the finite difference approach using the regular mesh with the constant grid step and the difference operators of the second order of accuracy. The dynamic relaxation method is proposed for the solution of the nonlinear problem. The evolutionary equations of the dynamic relaxation are constructed, and the optimum parameters of the converging linear iterative process are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galimov, K.Z., Paimushin, V.N., and Teregulov, I.G., Osnovania nelineinoi teorii obolochek (Basics of the Nonlinear Shell Theory), Kazan: Fen, 1996, p. 216.

    Google Scholar 

  2. Gureeva, N.A., Klochkov, Yu.V., and Nikolaev A.P., Analysis of a Shell of Revolution Subjected to Axisymmetric Loading Taking into Account Geometric Nonlinearity on the Basis of the Mixed Finite Element Method, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 14–19 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 232–239].

    Google Scholar 

  3. Gainutdinova, T.Yu., Algorithms of Solving the Matrix Equations for Deformation Mechanics of Flexible Structures at Finite Displacements, Izv. Vuz. Av. Tekhnika, 2011, vol. 54, no. 2, pp. 12–14 [Russian Aeronautics (Engl. Transl.), vol. 54, no. 2, pp. 131–135].

    Google Scholar 

  4. Boiko, D.V., Zheleznov, L.P., and Kabanov, V.V., Analysis of Nonlinear Deformation and Stability of Reinforced Elliptic Cylindrical Shells under Bending with Internal Pressure, Izv. Vuz. Av. Tekhnika, 2010, vol. 53, no. 2, pp. 21–24 [Russian Aeronautics (Engl. Transl.), vol. 53, no. 2, pp. 149–154].

    Google Scholar 

  5. Amabili, M., Nonlinear Vibrations and Stability of Shells and Plates, New York: Cambridge Univ. Press, 2008, 392 p.

    Book  MATH  Google Scholar 

  6. Alijani, F. and Amabili, B., Non-Linear Vibrations of Shells: A Literature Review from 2003 to 2013, International Journal of Non-Linear Mechanics, 2014, vol. 58, pp. 233–257.

    Article  Google Scholar 

  7. Shin, W. H., Oh, I. K., and Lee, I., Nonlinear Flutter of Aerothermally Buckled Composite Shells with Damping Treatments, Journal of Sound and Vibration, 2009, vol. 324, nos. 3–5, pp. 556–569.

    Article  Google Scholar 

  8. Tubaldi, E., Alijani, F., and Amabili, M., Non-Linear Vibrations and Stability of a Periodically Supported Rectangular Plate in Axial Flow, International Journal of Nonlinear Mechanics, 2014, vol. 66, pp. 54–65.

    Article  Google Scholar 

  9. Krys’ko, A.V., Zhigalov, M.V., and Saltykova, O.A., Control of Complex Nonlinear Vibrations of Sandwich Beams, Izv. Vuz. Av. Tekhnika, 2008, vol. 51, no. 3, pp. 10–13 [Russian Aeronautics (Engl. Transl.), vol. 51, no. 3, pp. 238–243].

    Google Scholar 

  10. Seregin, S.V., Free Vibrations of a Thin Circular Cylindrical Shell Weakened by a Hole, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 9–13 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 258–262].

    MathSciNet  Google Scholar 

  11. Gorshkov, A. G., Zhavoronok, S.I., Medvedskii, A. L., and Rabinskii, L. N., Plane Problems of Diffraction of an Acoustic Pressure Wave on a Thin Orthotropic Panel Placed in a Rigid Shield, Mechanics of Solids, 2004, vol. 39, no. 1, pp. 161–170.

    Google Scholar 

  12. Gorshkov, A. G., Medvedskii, A. L., Rabinskii, L. N., and Zhavoronok, S.I., A Non-Steady Problem of Cylindrical Pressure Wave’s Diffraction on Thin Elliptical Shell, International Journal for Computational Civil and Structural Engineering, 2005, vol. 1, no. 2, pp. 423–424.

    Article  Google Scholar 

  13. Zhavoronok, SI. and Rabinskii, L. N., Axisymmetric Problem of Unsteady Interaction of Acoustic Pressure Waves with an Elastic Shell of Revolution, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 2006, vol. 12, no. 4, pp. 541–554.

    Google Scholar 

  14. Egorova, O. V., Zhavoronok, S. I., and Rabinskii, L. N., Middle Thickness Shell's Interaction with Acoustical Wave, Vestnik Moskovskogo Aviatsionnogo Instituta, 2010, vol. 17, no. 2, pp. 127–135.

    Google Scholar 

  15. Zhavoronok, S. I., Kuprikov, M.Yu., Medvedskii, A. L., and Rabinskii, L. N., Chislenno-analiticheskie methody resheniya zadach difraktsii akusticheskikh voln na absolutno tverdykh telakh i obolochkah (Analytical and Numerical Methods of Solution for Problems of Diffraction of Acoustical Waves on Solids and Shells), Moscow: Fizmatlit, 2010.

    Google Scholar 

  16. Paimushin, V.N., The Equations of the Geometrically Non-Linear Theory of Elasticity and Momentless Shells for Arbitrary Displacements, J. Appl. Math. Mech., 2008, vol. 72, no. 5, pp. 597–610

    Article  MathSciNet  Google Scholar 

  17. Paimushin, V.N., A Theory of Thin Shells with Finite Displacements and Deformations Based on a Modified Kirchhoff–Love Model, J. Appl. Math. Mech., 2011, vol. 75, no. 5, pp. 568–579.

    Article  MathSciNet  Google Scholar 

  18. Paimushin, V.N., Relationships of the Timoshenko-Type Theory of Thin Shells with Arbitrary Displacements and Strains, Journal of Applied Mechanics and Technical Physics, 2014, vol. 55, no. 5, pp. 843–856.

    Article  MathSciNet  MATH  Google Scholar 

  19. Paimushin, V.N. and Vyalkov, A.E., Geometrically Refined Nonlinear Theory of Three-Layer Cylindrical Shells with Transversally Soft Filler of Arbitrary Thickness, Izv. Vuz. Av. Tekhnika, 2002, vol. 45, no. 3, pp. 10–14 [Russian Aeronautics (Engl. Transl.), vol. 45, no. 3, pp. 12–18].

    Google Scholar 

  20. Paimushin, V.N. and Vyalkov, A.E., Geometrically Refined Nonlinear Theory of Three-Layer Spherical Shells with Transversally Soft Filler of Arbitrary Thickness, Izv. Vuz. Av. Tekhnika, 2002, vol. 45, no. 4, pp. 17–21 [Russian Aeronautics (Engl. Transl.), vol. 45, no. 4, pp. 17–23].

    Google Scholar 

  21. Golovanov, A.I., Tyuleneva, O.I., and Shigabutdinov, A.F., Metod konechnukh elementov v statike i dinamike tonkostennykh konstruktsii (Finite Element Method in Statics and Dynamics of Thin-Walled Structures), Moscow: Fizmatlit, 2006.

    Google Scholar 

  22. Golovanov, A.I., Modeling of the Large Elastoplastic Deformations of Shells. Theoretical Basis of Finite- Element Models, Problemy Prochnosti i Plastichnosti, 2010, no. 72, pp. 5–17.

    Google Scholar 

  23. Trushin, S.I., Knyazev, A. A., and Zhavoronok, S.I. The Solution of a Nonlinear Problem of Stability of a Multi-Layer Shell of Revolution Made from a Composite Material of Low Shear Rigidity, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 2001, vol. 7, no. 3, pp. 363–373.

    Google Scholar 

  24. Trushin, S.I. and Zhavoronok, S.I., Nonlinear Analysis of Multilayered Composite Shells Using Finite Difference Energy Method, Proc. of the 5th Int. Conference on Space Structures, 2002, Guildford, pp. 1527–1533.

    Google Scholar 

  25. Dmitriev, V.G. and Zhavoronok, S.I., Finite Element and Finite Difference Analysis of the Nonlinear Deformed State of Heterogeneous Shells of Revolution under Static Loading, Proc. of the 13 th A. G Gorshkov International Workshop “Dynamic and Technological Problems in Mechanics of Structures and Continuum Media” Moscow: Moscow Aviation Institute, 2007, vol. 2, pp. 120–134.

    Google Scholar 

  26. Grigoliuk, E.I. and Shalashilin, V.I., Problemy nelineinogo deformirovania: metod prodolzhenija reshenija po parametry v nelinejnykh zadachakh mekhaniki deformiruemogo tverdogo tela (The Problems of Nonlinear Deforming: the Arc-Length Method in Nonlinear Problems of Solid Mechanics), Moscow: Nauka, 1988.

    Google Scholar 

  27. Danilin A.N. and Shalashilin, V.I., Mathematical Modeling of the Strong Nonlinear Deformation Processes in Euler Coordinates on the Basis of Continuation Method, Mekhanika Kompozitsionnykh Materialov i Konstruktsii, 2009, vol. 15, no. 4, pp. 553–565.

    Google Scholar 

  28. Frieze, P.A., Hobbs, R.E., and Dowling, P.J., Application of Dynamic Relaxation to the Large Deflection Elasto-Plastic Analysis of Plates, Computers and Structures, 1978, vol. 8, no. 2, pp. 301–310.

    Article  MATH  Google Scholar 

  29. Dmitriev, V.G. and Preobrazhenskii, I.N., Deforming of Flexible Shells with Cutouts, Mechanics of Solids, 1988, no. 1, pp. 177–184.

    Google Scholar 

  30. Dmitriev, V. G., Variational Difference Schemas in Nonlinear Shell Mechanics, Proc. of the 4th International Seminar “Technological Problems of Strength”, Moscow: MGOU, 1997, pp. 57–67.

    Google Scholar 

  31. Dmitriev, V.G., Egorova, O.V., and Rabinskii, L.N., Solution of Nonlinear Initial Boundary-Value Problems of the Mechanics of Multiply Connected Composite Material Shells on the Basis of Conservative Difference Schemes, Composites: Mechanics, Computations, Applications: An International Journal, 2015, vol. 6, no. 4, pp. 265–277.

    Google Scholar 

  32. Dmitriev, V.G., Zhavoronok, S.I., Korovin, E.K., and Moskvitin, G.V., Optimum Computing Technologies in Mathematical Modeling of Nonlinear Problems in Deformable Solid Mechanics, Inzhenernaya Fizika, 2008, no. 6, pp. 2–6.

    Google Scholar 

  33. Birger, I.A., Sterzhni, plastinki, obolochki (Beams, Plates, and Shells), Moscow: Fizmatlit, 1992.

    MATH  Google Scholar 

  34. Vasil’ev, V. V., Mekhanika konstruktsii iz kompozitsionnykh materialov (Mechanics of Composite Structures), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  35. Samarskii, A. A., Teorija raznostnykh skhem (A Theory of Difference Schemes), Moscow: Nauka, 1989.

    Google Scholar 

  36. Bakhvalov, N. S., Zhidkov, N. P., and Kobel’kov, G. M., Chislennye methody (Numerical Methods), Moscow: Phyzmatlit, Laboratoria Bazovykh Znanii, 2001.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Dmitriev, V.I. Biryukov, O.V. Egorova, S.I. Zhavoronok, L.N. Rabinskii, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2017, No. 2, pp. 8–15.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, V.G., Biryukov, V.I., Egorova, O.V. et al. Nonlinear deforming of laminated composite shells of revolution under finite deflections and normal’s rotation angles. Russ. Aeronaut. 60, 169–176 (2017). https://doi.org/10.3103/S1068799817020027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799817020027

Keywords

Navigation