Advertisement

Russian Aeronautics (Iz VUZ)

, Volume 58, Issue 4, pp 478–483 | Cite as

Cooperative processing of measurements in multilateral radial–range difference system of passive radiolocation

  • S. V. BachevskiiEmail author
  • I. S. Martem’yanov
Radio Engineering and Communication
  • 21 Downloads

Abstract

A study is made to define a procedure of cooperative processing of goniometric and range difference measurements in multilateral system of passive radiolocation. As a result, we worked out the computational algorithms, which implement this procedure. The accuracy characteristics are estimated.

Keywords

multilateral system cooperative processing position (location) triangulation method of least squares 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almazov, V.B., Metody passivnoi radiolokatsii (Passive Radar Techniques), Kharkov: MIRTA, 1974.Google Scholar
  2. 2.
    Aviatsionnaya radionavigatsiya (Aviation Radio Navigation), Sosnovskii, A.A., Ed., Moscow: Transport, 1990.Google Scholar
  3. 3.
    Dmitrienko, A.A. and Sedyshev, S.Yu., The Results of the Analysis of Passive Range-Difference System for Detection of Radio Emission Sources with a Minimization of the Overview Interval over the Path Difference, Doklady BGUIR, 2014, no. 6, pp. 67–73.Google Scholar
  4. 4.
    Bulychev, Yu.G. and Livinskii, S.V., The Azimuthal-Plane Method of Estimating the Coordinates of an Object in the Multiposition System of Passive Location, Izv.Vuz. Radioelektronika, 1998, vol. 41, no. 10, pp. 3–10 [Radioelectronics and Communications Systems (Engl. Transl.), vol. 41, no. 10].Google Scholar
  5. 5.
    Korsunov, N.I. and Egorov, D.V., Mathematical Model for Determining the Spatial Coordinates by Means of the Passive Radar, Nauchnye Vedomosti BelGU, 2014, vol. 30, no. 8, pp. 76–82.Google Scholar
  6. 6.
    Kishko, D.V., Analysis of the Accuracy of Determining Own Position Using Radio Navigation Systems with Low Bases between the Transmitters, Trudy MAI, 2014, no. 78, URL: http://wwwmairu/science/trudy/ publishedphp?ID=53755.Google Scholar
  7. 7.
    Simakov, V.A., Modeling of Passive Radar Adaptive Systems Based on Principles of Range-Difference Coordinate Measuring, Nauchnye Vedomosti BelGU, 2005, vol. 22, no. 2, pp. 211–219.Google Scholar
  8. 8.
    Peretyagin, V.I. and Polyukhin, I.F., Principles of Modeling of Passive Radiolocation Complexes of Air Defense, Trudy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Radiolokatsiya, navigatsiya i svyaz’”(Proc. Int. Sc.-Tech. Conference “Radiolocation, Navigation and Communication”), Voronezh, 2006, pp. 2072–2082.Google Scholar
  9. 9.
    Anikin, A.L., Oganesyan A.A., Aksenov, S.Yu., and Morozov, A.S., Methods of Integration of Satellite Navigation Receiver and Inertial Navigation System. The Results of Experimental Research of Loosely Coupled Algorithm of Integration in the Urban Environment, Novosti Navigatsii, 2008, no. 4, pp. 25–29.Google Scholar
  10. 10.
    Nemov, A.V., Protection of Civil Use GNSS against Aircraft Equipment Interference, Izv. SPbGETU “LETI”, 2010, no. 6, pp. 3–10.Google Scholar
  11. 11.
    Borisov, E.G. and Mashkov, G.M., Obtaining the Maximum Likelihood Estimates of Target Coordinates Using Cooperative Processing of Rangefinding and Goniometric Information, Izv.Vuzov Rossii. Radioelektronika, 2012, no. 3, pp. 84–92.Google Scholar
  12. 12.
    Borisov, E.G., Improving the Accuracy of Target Coordinates Determination with the Implementation of Cooperative Processing in Multilateral Radar System, Radiotekhnika, 2013, no. 5, pp. 4–9.Google Scholar
  13. 13.
    Mashkov, G.M., Borisov, E.G., Vladyko, A.G., and Gomonova, A.I., The Use of Software-Defined Radio Systems in Multilateral Navigation Radio Systems, Infocommunications Journal, 2015, vol. 7, no. 2, pp. 26–31.Google Scholar
  14. 14.
    Kaune, R., Horst, J., and Koch, W., Accuracy Analysis for TDOA Localization in Sensor Networks, Proc. 14th Int. Conference on Information Fusion, 2011, Chicago, pp. 1647–1654.Google Scholar
  15. 15.
    Goritskii, Yu.A., Geometric Approach to the Accuracy Analysis of the Range-Difference Method, Trudy 12-oi mezhdunarodnoi konferentsii “Regulyarnaya i khaoticheskaya dinamika” (Proc. 12th Int. Conference “Regular and Chaotic Dynamics”), 2005, vol. 2, pp. 512–521.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.The Bonch–Bruevich Saint-Petersburg State University of TelecommunicationsSaint PetersburgRussia

Personalised recommendations