Skip to main content
Log in

Mixers based on a variable geometry ejector

  • Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • Published:
Russian Aeronautics (Iz VUZ) Aims and scope Submit manuscript

Abstract

A mathematical model, which permits the ejector geometry to be optimized, has been designed in the framework of the inverse problem with the use of a non-equilibrium model of the two-phase gas-droplet medium and pressure law. A conventional ejector with a cylindrical chamber and diffuser is compared to the optimum geometry ejector based on numerical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raushenbakh, B.V., Belyi, S.A., Bespalov, I.V., Borodachev, V.Ya, and Volynskii, M.S., Fizicheskii osnovy rabochego protsessa v kamerakh sgoraniya reaktivnykh dvigatelei (Physical Principles of the Working Process in Combustion Chambers of Jet Engines), Moscow: Mashinostroenie, 1964, p. 526.

    Google Scholar 

  2. Alemasov, V.E., Dregalin, A.F., and Tishin, A.P., Teoriya raketnykh dvigatelei (Theory of Rocket Engines), Moscow: Mashinostroenie, 1980, p. 533.

    Google Scholar 

  3. Vasil’ev, Yu.N., Theory of Two-Phase Gas and Fluid Ejector with a Cylindrical Mixing Chamber, in Lopatochnye mashiny i stryinye apparaty (Impeller Machines and Jet Devices), Moscow: Mashinostroenie, 1971, issue 5, pp. 175–261

    Google Scholar 

  4. Vasil’ev, Yu.N. and Gladkov, E.P., Experimental Study of a Vacuum Water and Air Ejector with a Multi-Barrel Nozzle, in Lopatochnye mashiny i stryinye apparaty (Impeller Machines and Jet Devices), Moscow: Mashinostroenie, 1971, issue 5, pp. 262–306.

    Google Scholar 

  5. Shamanov, N.P., Dyadik, A.N., and Labinskii, A.Yu., Dvykhfaznye stryinye apparaty (Two-Phase Jet Devices), Leningrad: Sudostroenie, 1989, p. 240.

    Google Scholar 

  6. Lepeshinskii, I.A., Theoretical Study on Flow in a Nozzle with a Two-Phase Medium, Teplofizika Vysokikh Temperatur, 1974, vol. 12, no. 3, pp. 578–584.

    Google Scholar 

  7. Lepeshinskii, I.A., Yakovlev, A.A., Molesson, G.V., and Voronetskii, A.V., Ones, V.I., and Tsipenko, A.V., Numerical and Experimental Study of Two-Phase Flow in the Nozzle with High Concentration of Disperse Phase, Matematicheskoe Modelirovanie, 2002, vol. 14, no. 7, pp. 121–127.

    MathSciNet  Google Scholar 

  8. Lepeshinskii, I.A., Gazodinamika odnoi dvykhfaznykh techenii v reaktivnykh dvigatelyakh (Gas Dynamics of One- and Two-Phase Flows in Jet Engines), Moscow: MAI, 2003. p. 276.

    Google Scholar 

  9. Babuška, I., Vitásek, E., and Práger, M., Numerical Processes in Differential Equations, London: John Wiley & Sons, 1966.

    MATH  Google Scholar 

  10. Mineev, A.F. and Frolov, S.D., Numerical Solution of a Direct Problem Related to Flow of Non-Condensable Gas with Disperse Particles in the Input Diffuser, in Gazotermodinamika mnogofaznykh potokov v energoustanovkakh (Gas And Thermodynamics of Multi-Phase Flows in Power Plants), Kharkov: KhAI. 1987. pp. 100–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lepeshinskii.

Additional information

Original Russian Text© I.A. Lepeshinskii, Yu.V. Zuev, V.A. Reshetnikov, I.V. Antonovskii, 2014, published in Izvestiya VUZ. Aviatsionnaya Tekhnika, 2014, No. 3, pp. 33–36.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepeshinskii, I.A., Zuev, Y.V., Reshetnikov, V.A. et al. Mixers based on a variable geometry ejector. Russ. Aeronaut. 57, 260–265 (2014). https://doi.org/10.3103/S1068799814030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799814030076

Keywords

Navigation