Skip to main content
Log in

A simple model of heat exchange and friction in the channels with spiral near-wall flow swirlers

  • Aircraft and Rocket Engine Theory
  • Published:
Russian Aeronautics (Iz VUZ) Aims and scope Submit manuscript

Abstract

A model, constructed on the basis of modern concepts, for thermohydraulic calculation of the heat exchanger channels with the heat exchange intensifiers is proposed. Urgent problems of the further investigations in this field are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalinin, E.K., Dreitser, G.A., Kopp, I.Z., and Myakochin, A.S., Effectivnye poverkhnosti teploobmena (Heat Exchange Effective Surfaces), Moscow: Energoatomizdat, 1998.

    Google Scholar 

  2. Webb, R.L. and Kim, N.H., Principles of Enhanced Heat Transfer, N.Y.: Taylor, 2005.

    Google Scholar 

  3. Leont’ev, A.I. and Olimpiev, V.V., Thermophysics and Heat Engineering of the Promising Heat Exchange Intensifiers, Teplofizika i Teplotekhnika Perspectivnykh Intensificatorov Teploobmena, Izv. RAN. Energetika, 2011, no. 1, pp. 7–31.

  4. Migai, V.K., Povyshenie effektivnosti sovremennykh teploobmennikov (Increase of Modern Heat Exchanger Efficiency), Leningrad: Energiya, 1980.

    Google Scholar 

  5. Olimpiev, V.V., Heat Transfer and Hydraulic Resistance of Fluid in a Spiral-Bulged Tube, Izv.Vuz. Av. Tekhnika, 1992, vol. 35, no. 2, pp. 68–70 [Russian Aeronautics (Engl. Transl.), vol. 35, no. 2, pp. 72–74].

    Google Scholar 

  6. Brodov, Yu.M., Gal’perin, and Chizhevskaya, E.M., To Calculation of Heat Transfer in Water Flows in Profiled Twisted Tubes, Inzh-Fiz. Zhurnal, 1985, vol. 49, no. 5, pp. 50–54 [Journal of Engineering Physics and Thermophysics (Engl. Transl.), vol. 49, no. 5, pp. 718–722].

    Google Scholar 

  7. Zimparov, V.D., Vulchanov, N.L., and Delov, L.B., Heat Transfer and Friction Characteristics of Spirally Corrugated Tubes for Power Plant Condensers. 1. Experimental Investigation and Performance Evaluation, Int. Journal of Heat and Mass Transfer, 1991, vol. 34, no. 9, pp. 2187–2197.

    Article  Google Scholar 

  8. Vulchanov, N.L., Zimparov, V.D., and Delov, L.B., Heat Transfer and Friction Characteristics of Spirally Corrugated Tubes for Power Plant Condensers. 2. A Mixing-Length Model for Predicting Fluid Friction and Heat Transfer, Int. Journal of Heat and Mass Transfer, 1991, vol. 34, no. 9, pp. 2199–2206.

    Article  Google Scholar 

  9. Obot, N.T., Das, L., and Rabas, T.J., Smooth and Enhanced Tube Heat Transfer and Pressure Drop in Compact Heat Exchangers and Enhancement Technology for the Process Industries UEF Third Int. Conference, Shan, R.K., Ed., N.Y.: Begell House, 2001, pp. 190–204.

    Google Scholar 

  10. Olimpiev, V.V., Modified Reynolds Analogy for Separated Flows Attached to a Wall, Izv.Vuz. Av. Tekhnika, 2002, vol. 45, no. 3, pp. 67–68 [Russian Aeronautics (Engl. Transl.), vol. 45, no. 3, pp. 53–59].

    Google Scholar 

  11. Lewis, M.J., An Elementary Analysis for Predicting the Momentum- and Heat-Transfer Characteristics of a Hydraulically Rough Surface, Trans. of the ASME. J. Heat Transfer, 1975, vol. 97, no. 2, pp. 249–254.

    Article  Google Scholar 

  12. Cockrell, D.J., Nigim, H.H., and Alhusein, M.A., Turbulent Boundary Layer Development in the Presence of Small Isolated Two-Dimensional Surface Discontinuities, J. Fluids Engineering, 1990, no. 6, pp. 472–477.

  13. Gortyshov, Yu. F., Olimpiev, V.V., and Abdrakhmanov, A.R., Calculation of Turbulent Heat Transfer and Resistance in Channels with Lateral Annual Grooves, Izv.Vuz. Av. Tekhnika, 1997, vol. 40, no. 3, pp. 56–63 [Russian Aeronautics (Engl. Transl.), vol. 40, no. 3, pp. 53–59].

    Google Scholar 

  14. Olimpiev, V.V. and Yakimov, N.D., Calculation of Heat Transfer and Friction in Grooves Lateral to Turbulent Flows, Teploenergetika, 2002, vol. 49, no. 3, pp. 28–32 [Thermal Engineering (Engl. Transl.), vol. 49, no. 3, pp. 204–209].

    Google Scholar 

  15. Komarov, P.L. and Polyakov, A.F., Investigation of Turbulence and Heat Exchange Characteristics Behind the Reverse Backstep in the Slit Channel, Preprint of Inst. of High Temperatures, Russ. Acad. Sci., Moscow, 1996, no. 2. 396, p. 70.

  16. Leont’ev, A.I. and Olimpiev, V.V., The Effect of Intensifiers of Heat Transfer on the Thermohydraulic Properties of Channels, Teplofizika Vysokikh Termperatur, 2007, vol. 45, no. 6, pp. 925–953 [High Temperature (Engl. Transl.), vol. 45, no. 6, pp. 844–870].

    Google Scholar 

  17. Mitrofanova, O.V., Hydrodynamics and Hear Transfer in Swirling Channels with Swirlers (Analytical Review), Teplofizika Vysokikh Termperatur, 2003, vol. 41, no. 4, pp. 587–633 [High Temperature (Engl. Transl.), vol. 41, no. 4, pp. 518–559].

    MathSciNet  Google Scholar 

  18. Ravigururajan, T.S. and Bergles, A.E., General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes, in Augmentation of Heat in Energy System, Bishop, P.J. Ed., ASME HTD 52, 1985, pp. 5–20.

  19. Kamenshchikov, F.T., Reshetov, V.A., Ryabov, A.N., et al., Voprosy mekhaniki vrashchayushchikhsya potokov i intensifikatsiya teploobmena v YaEU (Problems of Swirling Flow Mechanics and Heat Exchange Intensification in NPP), Moscow: Energoatomizdat, 1984.

    Google Scholar 

  20. Kutateladze, S.S. and Leont’ev, A.I., Teplomassoobmen i trenie v turbulentnom pogranichnom sloe (Heat-Mass Exchange and Friction in a Turbulent Boundary Layer), Moscow: Energoatomizdat, 1985.

    Google Scholar 

  21. Olimpiev, V.V., Relaxation of the Inner Boundary Layer Behind a Low Barrier in the Channel, Teploenergetika, 1995, no. 5, pp. 55–58.

  22. Epik, E.Ya. and Suprun, T.T., Influence of Separation Type and Intensity on Heat Exchange and Hydrodynamics in the Relaxation Zone, Trudy 5-oi Rossiiskoi natsional’noi konferentsii po teploobmeny (Proc. 5th Russian National Conf. on Heat Exchange), Moscow, 2010, vol. 1, pp. 248–251.

    Google Scholar 

  23. Garcia, A., Vicente, P.G., and Viedma, A., Experimental Investigation on Heat Transfer and Frictional Characteristics of Wire Coils Inserts in Transition Flows at Different Prandtl Numbers, URL: http://hdl.handle.net/10317/606.

  24. Kornilov, V.I., Reduction of Turbulent Friction by Active and Passive Methods (Review), Teplofizika i Aeromekhanika, 2005, vol. 12, no. 2, pp. 183–208 [Thermophysics and Aeromechanics (Engl. Transl.), vol. 12, no. 2, pp. 175–196].

    Google Scholar 

  25. Terekhov, V.I., Separated Flows, Mechanism of Formation and Possibilities of Heat Transfer Processes Control, 13-ya Shkola-seminar molodyh uchenyh i specialistov pod rukovodstvom akademika RAN A.I. Leont’eva “Fizicheskie osnovy eksperimental’nogo i matematicheskogo modelirovaniya processov gazodinamiki i teplomassoobmena v energoustanovkah” (13th School-Seminar of Young Scientists and Specialists under Supervision of the RAN Academician A.I. Leont’ev “Physical Fundamentals of Experimental and Mathematical Simulation of Gasdynamics and Heat and Mass Exchange Processes in Power Plants”), Saint-Petersburg, 2001, vol. 1, pp. 15–20.

    Google Scholar 

  26. Terekhov, V.I., Problems of Heat Exchange in Separated Flows, Trudy 4-oi Rossiiskoi natsional’noi konferentsii po teploobmeny (Proc. 4th Russian National Conf. on Heat Exchange), Moscow, 2006, vol. 1, pp. 49–52.

    Google Scholar 

  27. Dzyubenko, B.V., Kuzma-Kichta, Yu.A., Leont’ev, A.I., et al., Intensifikatsiya teplo- i massoobmena na makro-, mikro- i nanomasshtabakh (Intensification of Heat- and Mass Exchange in Macro-, Micro and Nanoscales), Moscow: TsNIIAtominform, 2008.

    Google Scholar 

  28. Varava, A.N., Dedov, A.V., Zakharov, E.M., Malakhovskii, S.A., and Yagov, V.V., Study of Pressure Drop and Heat Transfer in a Swirl Flow with One-Sided Heating in a Range of Heat Flowrates Below Boiling Crisis, Teploenergetika, 2009, vol. 56, no. 11, pp. 53–62 [Thermal Engineering (Engl. Transl.), vol. 56, no. 11, pp. 953–962].

    Google Scholar 

  29. Osnovy teploperedachi v aviacionnoi i raketno-kosmicheskoi tekhnike (Fundamentals of Heat Transfer in Aeronautics), Avduevskii, V.S., Ed., Moscow: Mashinostroenie, 1992.

    Google Scholar 

  30. Idel’chik, I.E., Spravochnik po gidravlicheskim soprotivleniyam (Handbook on Hydraulic Resistances), Moscow.: Mashinostroenie, 1992.

    Google Scholar 

  31. Zhukauskas, A.A., Konvektivnyi perenos v teploobmennikakh (Convective Transfer in Heat Exchangers), Moscow: Nauka, 1982.

    Google Scholar 

  32. Webb, R.L., Narayanamurthy, R., and Thors, P., Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness, Journal of Heat Transfer, 2000, vol. 122, no 1, pp. 134–142.

    Article  Google Scholar 

  33. Brodov, Yu.M., Ryabchikov, A.Yu., and Aronson K.E., Investigation of a Number of Heat Exchange Intensification Methods in Power Heat Exchangers, Trudy 3-oi Rossiiskoi natsional’noi konferentsii po teploobmeny (Proc. 3rd Russian National Conf. on Heat Exchange), Moscow, 2002, pp. 49–52.

  34. Prasad, R.C. and Jihua Shen, Performance Evaluation Using Exergy Analysis: Application to Wire-Coil Inserts in Forced Convection Heat Transfer, International Journal of Heat and Mass Transfer, 1994, vol. 37, no. 15, pp. 2297–2303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Olimpiev, B.G. Mirzoev, 2012, published in Izvestiya VUZ. Aviatsionnaya Tekhnika, 2012, No. 3, pp. 46–50.

About this article

Cite this article

Olimpiev, V.V., Mirzoev, B.G. A simple model of heat exchange and friction in the channels with spiral near-wall flow swirlers. Russ. Aeronaut. 55, 284–290 (2012). https://doi.org/10.3103/S1068799812030105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799812030105

Keywords

Navigation